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A MODEL OF EDDY VISCOSITY AND EDDY DIFFUSIVITY 
OF HEAT 

JrRi SIMONEK 

National Research Institute for Machine Design, Prague, Czechoslovakia 

Abstract-EddyviscosityasadistributionoftheprobabilitydensityoftheinfluenceofasoIid walldownintoa 
fluid Aow is derived. The expression for the wall influence is generally valid for the how and heat transfer in 
smooth and rough channels and for surfaces in longitudinal flow. A model of the eddy viscosity of developed 
flow ofamedium withconstantpropertiesinsmooth tubesispresented.Thecoefficientsofthemodeiarefound. 
Computed basic hydrodynamiccharacteristics areshown. An analogical model ofthe eddy diffusivity ofheat is 
presented and its relation to the model of eddy viscosity is derived. Thermokinetic characteristics of the media 
(Pr = 0.72-10) for the uniform heat flux are computed. The model of eddy diffusivity is extended to liquid 
metals. Connecting the models together allows the influence of dissipated energy on the thermokinetic 
characteristics and the heat transfer coefficient for dissipated energy to be derived. The physical significance 
of the coefhcients of the models are discussed and their relations to the mixing length and the quantities of 

vortex diffusion are indicated. 

NOMENCLATURE Y + +, dimensionless coordinate, y+Pr; 
u. 2). velocity in the x and Y directions, 

coefficient of the eddy viscosity model; 
coefficient of the eddy diffusivity (of heat) 
model ; 
coefficient related to eddy viscosity; 

respectively; 
friction velocity, (~~/p)*~~ ; 

;:, dimensionless velocity, u/u*. 

coefficient related to eddy diffusivity of heat ; Greek symbols 
relative characteristic (mixing) length, l/r,; CI, 8, coefficients of the eddy viscosity model; 
relative radius, r/r,, or I- Y; 
temperature ; 
relative velocity, u/u,; 
energy rate ; 
relative coordinate, yjr,, or I- R ; 
Fourier number, at/r; ; 
Nusselt number, Zkr,,,/,I; 
Peclet number, Re Pr; 

Prandti number, v/a; 

turbulent Prandtl number, a/&s; 
Reynolds number, 2u,rJv ; 
Zhukowsky number, vt/rz; 

thermal diffusivity, L/PC,; 
specific heat at constant pressure; 
specific heat at constant volume; 
velocity of circulation; 
peripheral velocity; 
(Fanning) friction factor ; 
heat transfer coe~~ent ; 
mixing length ; 
mean free path of molecules; 
exponent ; 
pressure; 
heat flux density; 
energy generation per unit volume; 
radius ; 

t1,;/3,, coefficients of the eddy diffusivity (of heat) 

vortex radius ; 
recovery factor ; 
time ; 
mean transIation velocity of molecules; 
coordinates ; 
dimensionIess coordinate, u*y/v ; 

model ; 
eddy viscosity ; 
eddy diffusivity of heat; 
kinematic viscosity; 
shear stress ; 
density of mass ; 
standard deviation ; 
dispersion ; 
angle velocity ; 
boundary layer thickness (relative); 
dynamic viscosity, vp ; 
vorticity ; 
circulation ; 
mean value of Rayleigh distribution ; 
heat conductivity; 
relative temperature, (T- TW)/( z - T,); 

AT*, temperature difference for expression of the 
universal temperature profile, q~/pc~u* ; 

AT**, temperature difference necessary to remove 
the dissipated energy, 9$*/h**; 

cp? relative circulation velocity, c&6,. 

Other symbols 

>, 
transverse mixing velocity; 
relative transverse mixing velocity, o/u,; 

P(Y), probability; 
f(Y), distribution of probability density; 
F(Y), distribution function. 

Subsc~pts and superscripts 
a, molecular ; 
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related to heat flux: 
valid for the center line, initial ; 
mean. bulk ; 
turbulent; 
corresponding to time: 

related to the wall : 
related to the dimension coordinate ; 
modified : 
related to the temperature ; 
related to the relative coordinate ; 
related to the angle velocity ; 
corresponding to dispersion ; 
concerning circulation ; 
related to shear stress ; 
related to eddy viscosity ; 
viscous : 
inflexion ; 
maximum ; 
minimum ; 
fluctuating ; 
mean in time; 

dimensionless : 
related to friction ; 
related to the dissipated energy; 
related to the adiabatic wall temperature. 

1. INTRODUCTION 

THE LATEST developments in technology and science 
bring about an increased demand for accuracy in 
engineering computations. In the field of turbulent fluid 
flow and heat transfer there is a need to investigate 

thoroughly the local flow and thermokinetic 
conditions. 

The characteristic quantities of turbulent fluid flow 

are most frequently expressed as a superposition of the 
mean value in time and the fluctuation component [l- 
41. In engineering computations another quantity is 
introduced in accordance with this approach, 

This quantity is analogous to molecular viscosity and is 
called the eddy viscosity or eddy diffusivity of 
momentum [2, 31. In thermokinetics a similar 

transport quantity is used, 

called the eddy diffusivity of heat. 
In spite of the fact that the eddy viscosity and eddy 

diffusivity of heat occur in many models as the decisive 
quantities they have not been worked into a usable 
form satisfying both the boundary conditions and the 
experimental data of basic turbulent flow and 
thermokinetic characteristics till now [6]. The data 
necessary to determine the eddy viscosity which are 
being published are usually satisfactory only for a 
certain limited area of the fluid flow. The data given for 

the eddy dilfusivity of heat are usually valid only for 
fluids for which the Prandtl numbers are kept within a 
very narrow interval. 

The present state of basic knowledge of the 
distribution of the eddy viscosity along the radius of a 
circular pipe. or possibly along the normal to surface of 

a constant cross-section channel. may be summarized 
as follows : 

(1) The course is a smooth function, its lirst 

derivation being continuous [6]. 
(2) At the center line of the channel, where dn!d> 

= 0, it has a finite value. 
(3) On the channel wall it fades out while near the 

wall it changes with the cube of the distance from the 

W~I rug. 

(4) In a symmetric channel its course is also 

symmetric [~I?]. 

The course 01‘ the eddy diffusivtty of heat shows 
identical properties. It differs only in that for high 
Prandtl number values (Pr 5 7) it increases near the 

wall with the fourth power of the distance [lo]. 
The aim of the present paper is to express the eddy 

viscosity and the eddy diffusivity of heat in an analytic 

form suitable for application in solving problems of 
turbulent tlow and heat transfer based on the statistical 
character- of these quantities. in accordance with the 
basic experimental data. The model of the eddy 
viscosity and eddy diffusivity of heat presented here is 
limited to the stationary, fully developed flow of an 
incompressible fluid with constant thermophysical 
properties in a smooth pipe. 

2. RASIC k:QI ATIONS OF TURBULENT FLOW IN A PIPE 

The turbulent flow of the incompressible lluid is 

described by the momentum equation [ 141 

I i iL1 I 1-p 
(v+E)/‘; = 

r ir i. I (2. I I 
(I” i’ c-\ 

If the relative velocity L’ = u/u, is introduced at the bulk 

velocity defined by 

after the pressure gradient has been expressed using the 
Fanning friction factor as 

with the useoftherelativecoordinate R = r/r, = 1 Y’ 
it is possible to rewrite the momentum equation in a 
dimensionless form as 

which must be completed by the normalization 
condition from the law of mass conservation, 

UR dR = ’ ? (2.2a) 
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For the boundary conditions R = 0 => dUfdR = 0 and The first term, 
R = 1 * U = 0 the first formal integration of equation 
(2.la) within the limits of (0, R) follows the expression 

dU J _=-;Rc ’ 
R dR 

dR R(v + E)/V 
= -fRe R expresses the direct viscous dissipated energy, while the 

-, (2.4) 
4 (v+s)/v 

second term 

from which, after another formal integration within 
the limits (R, l), another expression for velocity is 
obtained 

U=fRe dR 

=fRe s ’ R 
___ dR. (2.5) 

RtV +'$b 

expresses the turbulent energy production rate. The 
sum of these two terms gives the total energy rate, 

r du R2 

w=+r,dr=(v+E),v. 
(2.8e) 

Ifequation (2.5) is substituted into equation (2.2a), after 
a formal integration, the following equation is From equation (2.8d), 

obtained : 6 % 
-=-. 

s 

R v w, 
(2.9) 

f ?Re 
s I 

lR 1 ORdR (2.6) 
The relative eddy viscosity E/V then corresponds to the 

0 R R(v + E)/V 
dRdR=;, 

ratio of the local densities of turbulent energy 

from which, when the sequence of the integration [3] is 
production wand direct viscous dissipated energy WV. 

interchanged, after further adaptation follows 
The mean relative eddy viscosity may be understood as 
the mean value of the density ratio of turbulent energy 

(2.6a) 

It follows from equation (2.4), when E/V = 0 is inserted 
for R = 1, that for the velocity gradient at the wall 

= -iRe. (2.7) 

For the velocity at the general radius it is possible to 
write 

s ’ R 

u= R(v+E)/VdR 

s 

1R3 ’ (2Sa) 

-dR 
0 (v+s)/v 

The relations for the laminar flow follow directly 
from the above mentioned relations for s/v = 0. 

By integrating equation (2.1) within the limits (0, r), 

after multiplying it by the velocity gradient dujdr, the 

production and the direct viscous dissipated energy 
along the pipe radius 

(;),={O1;dR=jol$dR. (2.10) 

As in the differential equation (2.la) for turbulent 
flow, which is the starting point here, the productf Re 

appears. It is not possible to obtain from its solution an 
independent expression for f (or even for Re), but an 
expression in which both the quantities appear (f/4) Re, 

can be obtained. 
With regard to equations (2.8e) and (2.6a), it is 

possible to explain the meaning of this complex using 
the relative energy density integral along the pipe cross- 
section 

1 1 ap ri 

WR dR 
2 ax /Ul, 

following energy equation for the turbulent fluid flow is 
obtained [8] : and the expression for the velocity, according to the 

equation (2&), using the relative direct viscous 

This may be rewritten in a dimensionless form as 

(2.8) ‘issirT;;jyiden”‘:, =fRe sl” dR (2,5b) 

4 RV 4 RR ’ 

v2 du ’ -- _ 
0 tP4 dr 

3. EDDY VISCOSITY MODEL 

Let us take a random variable, Y, which acquires the 
(2.8b) value ofthe relative reach ofthe solid wall influence into 



the lluid Bow. ‘I his variable has, in a general sense, a The mean value of the Rayleigh distribution (the tirst 
certain distribution function general moment) is given by [ 11. 341 

F(Y) = P(.u < Y) (3.1) 

giving the probability that the influence will reach as far 
as the distance Y. With this distribution function. a 
certain probability density function,f( Y) is associated 

by (33.341 

‘/ = $cn)” (3.1 ii 

The dispersion (the second central moment) is given by 

[1 1,341 

dF(Y) =,I‘(Y, dY = P(Y < .‘/‘< Y+dY), (3.2) 

stating the probability that the reach distance will 
acquire the value Y in the elementary interval (Y, Y 

+ d Y). The probability that the influence will extend 
past the distance Y, or that the influence will continue to 
the distance Y, is expressed by 

For a more general expression of the function cp( YJ 

(,,( y) z= ! y/J ’ Y > 0, u >o. I;io, 13.131 
Iy 

the so-called Weibull distribution can bc obtained for 
the probability density [33J 

P(.i/‘> Y) = t -F(Y). (3.3) 

The conditional probability q(Y) that the influence will 
be damped in an elementary section dY, if it reaches as 
far as the distance Y, may be expressed by the ratio of 
the probabilities P(Y < :/’ < Y +dY) and P(,y > Y) 
[33,34] 

q(Y) = P(Y < .‘/’ < Y+dY!‘.‘/’ > Y) 

with the distribution function 

= 5’ ;;F$ Y$!Y). (3.4) 

Byinsertingequations(3.2)and(3.3)intoequation(3.4), 
and after further adaptation, a differential equation can 

be obtained 

F‘(Y) = 1 _-t‘ Y’C. (3.1 51 

where x is a parameter of the wall influence (the width 01 
thedistribution)andBisaparameterofthedistribution 
form (for a Rayleigh distribution /j = 2). For the 

Weibull distribution there is a corresponding mean 
value expressed by the T function [ 11. 34J 

(3.lt.l 

F’( Y) = C$?( Y)[ I -F(Y)]. (3.5) 

Bysolvingthisequationwithintheinterval(0. Y),with 
the boundary condition Y = 0 * F(Y) = 0, a general 
form for the distribution function is obtained 

and a corresponding dispersion, expressed also by the I 
function [ 11, 341 

F(Y) = I--exp[ -{CI (o(YjdY1. (3.6) 

Let us base our further considerations on the fact that 

the probability of the influence of the wall vanishing in 
the elementary section dY. when the distance Y has 
been reached,isdirectly proportional to this distance Y. 

By placing 

The idea of the statistical distribution of the reach ot 
the solid wall influence into the fluid flow, expressed by 
a Rayleigh or Weibull distribution. may be extended to 
rough surfaces. In this case it is necessary to use, instead 

of the two-parameter distribution, a distribution 
defined by three parameters, where the third parameter 
Y, signifies the minimum reach of the wall influence for 

all cases (the distribution parameter in relation to the 
origin). This reflects the shift of the flow from the wall 
and is directly related to the value of the relative wall 
roughness 

q(Y)=2Y, a>O: Y>O. (3.7) 
a 

the exponential term in equation (3.6) will have the form 

j:cp(Y)dY=l;:YdY=;, (3.8) 

from which an expression for the distribution of 
probability density of the wall influence follows 

f(y) = ? ye- )‘*a, (3.9) 
1 

which is, in mathematical statistics, called the Rayleigh 
distribution [34]. The corresponding distribution 
function has the form 

(3.10) 

As equations (3.9) and (3.10) or (3.14) and (3.15) and 
(318a,b), which express the probability of the wall 
influence reach into the fiuid flow, were derived in a 
quite general manner, their validity is also general. The 
distance from the wall where P + 1 is the limit of the 
turbulent boundary layer (in a general sense of both the 
hydrodynamic and thermal) or the boundary layet 
relevant to the mass diffusion The individual 
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coefficients (a, j?, Y,) which occur in the above- 

mentioned equations are dependent on the particular 
geometric and hydrodynamic or thermal boundary 
conditions or on the conditions of mass diffusion. 

If the relative distance Y = y/r, from the wall is 
replaced by the absolute distance y(m), or if it is related 
to a characteristic length other than the cross- 

dimension of the channel, the expressions are also valid 
for the case when the medium flows along the surfaces. 
In a channel, the value P + 1 corresponds to the reach 
of one wall influence towards the opposite wall. In case 

of not fully developed convection, or in the entrance 
region, the probability acquires the value P -+ 1 at a 
shorter distance from the wall (Y < 2). 

The character of the eddy viscosity in a smooth pipe, 
specified in the Introduction under the items (1) and (3), 
satisfies the linear combination of the probability 
densities of the range of wall influence for the relevant 

solutions of the differential equation (3.5), namely the 
difference of the two partial stochastic processes with 
the Rayleigh distribution of probability density. 

For the relative eddy viscosity the following equation 
may be written : 

” N Mm--A,fwm (3.19) 
V 

where 

f(Y) = i Ye-yZ’“; fw(Y) =” YeC**/“w, CL > LX,. 
w 

With regard to the symmetry of the problem [items (2) 
and (4)] it is necessary in the mathematical description 
of the model of eddy viscosity in a pipe to take into 
account the opposite symmetric branch with the 
coordinate (2- Y). As at the point Y = 2 (on the 
opposite wall) the Rayleigh distribution is not exactly 
zero, corrective terms may be introduced which 
represent negative mirror-like (symmetric) functions 
outside the interval YE (0,2), and the terms smaller 
than (2/c@ e-42/a or (2/1x,)4 e-4*/a” may be neglected. 

For the relative eddy viscosity the following 
expression may then be written : 

E = 2A [Ye-y2~u+(2- y) e-(2-yPh_(2+ y) 
v Lx 

x ,-(z+n%_(4_ y)e-(4-~w~~ 

_ $ [ye&y%“)+(2_ y)e-(2-Y)Va,_(2+ y) 

X e - (2 + YP/% _ (4 _ y) e - (4 - Y%] 

=+(Y)+G,(Y). 
w 

The analytic function expressed by the difference of 
two Rayleigh distributions is, at a very small distance 
from the wall, proportional to the third power of the 
distance from the wall 

& 
- = KY3. 
V 

(3.21) 

From the development of the basic terms of equation 
(3.20) (which contain only Y) into power series, a 
relation between the coefficients A, c(, A,, c(, in that 

expression and the coefficient K in the equation (3.21) 
can be obtained 

K = 264-4,) 

CC%, 
(3.22) 

From the condition of zero derivative on the wall 
(Y = 0) which results from the necessity of coincidence 

between the functions according to the equations (3.21) 
and (3.20), the following relationship between the 
coefficients in equation (3.20) will be obtained : 

(3.23) 

This allows the expression for the relative eddy 

viscosity to be simplified to 

& _ = 2A [y(e-Y"I"_e-Y%) 
v u 

+(2-Y)(e- (2 - r)*i0r _ e (2 - n*h) 

_ (2 + y)te - (2 + YP/a _ e (2 + Yh”) 

_ (4 _ Y)(e - (4 - w. _ e - (4 - Y)%“)] 

= FH(y). (3.20a) 

Equation (3.20a) satisfies all the characteristic features 
of eddy viscosity specified in the Introduction to this 

paper. The function according to equation (3.20a) has 
its maximum point, as well as two inflexion points, in 
the interval YE (0,l). The minimum point is situated 
at the center line Y = 1 and on the wall. 

As the Rayleigh distribution is a normalized function 
for which the following relation is valid : 

[:f(Y)dY = sb;: YeeY”” dY = 1, (3.24) 

and as at the point Y = 2 (on the wall) it differs only 
slightly from zero, it may be considered, with no loss of 
accuracy, that 

f 
:j-(Y)dY A 1, (3.24a) 

and with regard to the symmetry of the functions in 
equation (3.20) that 

sd sd I: 
f(Y)dY+ f(2- Y)dY = f(Y)dY = 1.(3.24b) 

An analogous consideration is also possible for the 
function f,(Y). The coefficients A and A, then 
correspond to mean functional values and their 
difference 

A-A,=A,= E 0 v s 

(3.25) 

corresponds directly to the mean value of the relative 
eddy viscosity along the pipe radius. For the coefficient 



K In equation (3.22) it is possible to write, with regard to 
the equations (3.23) and (3.25), 

In equation (3.20) there are four coefficients, namely A. 

X, I, and 4 u: for the application of the model it is 

necessary to know their values. 

The approximate coordinates ofthe inflexion points for 
c( > a, may be determined from 

Equation (3.23) enables the number of unknown 
coefficients to be limited to three in equation (3.20a). and 
Thus we need to know either three experimental data 
points or three physical conditions. For the individual 

flow regimes, defined by the Reynolds number Re, we 

may consider the available literature values of the 
Fanning friction factor ,I‘ and the velocity U, at the 
center line. which may also be simply determined 

experimentally. As the third necessary datum the value 
of the arbitrary radial velocity may be used. In the first 
place we may take into account the radius on which the 
local velocity is equal to the bulk velocity, i.e. L’ = I 
(given in ref. [Y]). 

The coordinate of the turbulent energy density 
production maximum x max has been determined from 
the condition d WJd Y = 0 and W msx from the equation 
(2.8d) for Y = q max. 

For the application, the following substitute 
relationships have been combined with the values ofthe 
coefficients for discrete values of the Reynolds number 

As the third condition, besides the experimental data 
forf’or (,j’/4)R~ and the velocity U,,. the energy bond 
between the stochastic processes expressed by the 

probability distribution.f’( Y) and,fi( Y)(i.e. the principle 
of maximum energy degradation) may be used to find 
the values of the coefficients in equation (3.20a). The 

condition of maximum energy degradation is satisfied 
for the flow regime in question for the minimum mean 
value of the ratio of production of turbulent energy 
density to direct viscous dissipated energy along the 

pipe radius which equals, according to equation (2.10) 
the mean value of the relative eddy viscosity and, 
according to equation (3.25). also equals the value ofthe 

coefficient A, 

The coefficient A varies approximately linearly with 
Re. On the other hand the coefficient z is practically 
constant, while the coefficient LX, decreases rapidly with 

increasing Re. 
ln Table 1, some basic dimensionless parameters 

characteristic for turbulent flow are given, namely the 
dimensionless coefficient K+ ’ expressing the pro.- 

portionality of eddy viscosity near the wall to the third 
power of the dimensionless distance from the wall .r _. 

The system of equations (2.5) and (2.6a) for given 

couples of values of U,, and (./‘,/4) Re, corresponding to 
the chosen values of Reynolds number Re in the region 

of developed flow (RYE (lo’, lo(‘)), has been solved 
numerically and the coefficients ,4. x(. X~ have been 
found for which 4, is a minimum. The values of the 
friction factor have been determined on the basis of the 

Nikuradse equation [3] 

I 
j ITT = 4.0 log(Re,f”)-0.40. (3.27) 

The values of velocity U, at the center line have been 
determined for the respective values of Re from 

~~ = 0.1078 log(Re U0)+0.9547. (3.28) 
(Cl,- I)‘,4 

These values have been combined over the interval 
Re E ( 104, IO’) with the experimental values found by 
Nikuradse [3]_ The computed coefficients A, cc, CL, are 
given in Table 1, together with other characteristic 

quantities, namely A,, Y,,, x,,,. W maX, A,, K. The 

coordinate of the intlexion point yi, (situated nearer to 
the wall) of the eddy viscosity has been found by solving 

d*(a/v) d2N( Y) 

dY2 dY2 
= 0. 

4 = O.O029396(Re +2000)0.“341, (3.29) 

cx = 0.37252(Re-9460)m0-“‘302. (3.30) 

% = 40198.7(Re- 1630) -’ ‘I”. (3.3 lb 

1 + = 
K 

K 
[(,f/2)‘:2(Re/2)]3’ 

(3.32) 

(3.34) 

the dimensionless mean eddy viscosity, 

the dimensionless distance of the inflex point of eddy 

viscosity from the wall, 

‘I’ Re 
1 L. (3.34a) 

and the dimensionless distance of the turbulent energy 
density production maximum 

(3.34b) 

The coefficients K + + G 6 x 10-j and ai g 0.06 are 
approximately constant in the range of Re values which 
has been observed. The dimensionless distances y;,., 
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: I7 and J’,,, g 29 are the same for all the values of Rc 
which have been considered. The value yLinlnX = 12 is in 
agreement w-ith Laufer’s experimental values LX] 
including the value w,,,,, which differs only slightly 
from 0.25 for all Re values. The value l;iL -= 29 

corresponds to the boundary between the turbulent 

core and the buffer layer and is usually regarded to 
be in the range J ’ = 27 30 [3, 141, the universal 
dimensionless profile being expressed as u+ = f(y’ ). 
The coordinate Y, ,,,il* of the turbulent energy density 
production maximum is practically identical with the 
coordinate Y ,_ where the eddy viscosity c equals the 
molecular viscosity I’. i.e. z:, 1’ = 1, or where the local 
density of the turbulent production energy W, equals 

the local density of the direct viscous dissipated energy 
I&;. The coordinate Y, , which follows from the 
solutionofequation(3.2O)fori:;\t = I andyLt_,,aregiven 
in Table 1. The coordinates Y, mdx and I’= y differ only 
slightly from the values of YUL given by the Blasius 
relation 141 

(3.36) 

for the thickness of the viscous layer; the coordinates 

YBr and yi,, are also given in Table 1. 
When determining the values of the coefficients A, J 

and 1, using the experimental values offand U, further 
conditions, such as the assumed minimum of the ratio 

of production of turbulent energy and direct viscous 
dissipated energy along the cross-section, were taken 

into account as well as the hypothesis ofthe mean eddy 
viscosity minimum. The computed velocity profiles 
determined for conditions other than the required 

mean eddy viscosity minimum along the pipe radius are 
not in agreement with the experimentally found 
profiles. It is therefore possible to regard the initial 
hypothesis as correct and to assume that momentum 

transport is not a cross-section function but a path 
function. 

The procedure for determining the coefficients A, x 

and s(, may be modified. for example using the fact that 

.‘I” ’ = const. instead of the experimental values of the 
velocity U,,. 

The fact that the dimensionless coordinates fib and 

ytimiln are practically independent of the flow regime (i.e. 
of Reynolds number Re) leads to a consideration of the 
inner connections of the turbulent fluid flow in these 
quantities. From the hydrodynamic equations only 
such dependencies follow that allow the interpretation 
of the physical meaning of these variables. No 
relationship gives a quantitative expression of any 
linkage. This is also why the statistical characteristics of 
the eddy viscosity course (so called ‘quantiles’) have 
been analyzed and a connection between the 
coordinate of energy production turbulent maximum 
and the values of the coefficients A and A, or r and c(, 
have been found. It has been found that the coordinate 
Y, max and the coordinates of the point where the sum of 
the integral effect of both the components of the eddy 
viscosity is equal to one half of the total effect of the 

component near the wall coincide. 1.e 

After simplifying this equation by leaving out of the 

unessential terms near the wall which contain the 
coordinates (2 ~- Y). (2+ Y), (4- Y), replacing .I,, 1 
= q/x(, and after integration we obtain 

The deviations between ‘i, milx determined on the basis 
ofequations (2.8d) and (3.37a) amount, in the observed 
interval Re E ( 104, IO”), to 0.14”,,, for small Reynolds 
numbers and to 0.000002~~ for large Re. 

The finding that the coefficient c( varies only very little 
with Re and that the mean value of reach of the wall 

influence ye (rmax = 0.341655 3 rJ_ 0.5180. yIni,, 
= 0.3 13297 =+ ,I,,,,” = 0.4998), determined on the basis 
of this coefficient from the equation (3. I I ), varies even 
less, leads to the consideration that the mean value of 
the wall influence reach into the turbulent core equaia 
practically one half of the pipe radius. i.e. II = 0.5. with 
which is associated, according to equation (3.11). the 
coefficient CI = I/n. which is constant throughout the 
region of the developed flow. This value of the 
coefficient r is associated with the probability o! 

the reach ofthe wall influence towards the opposite wall 
(Y -: 2). 

P(2) = 1 -e22” = l--3.487 x IO ” = .999996513. 

The finding of the connection between the 
coefficients A and A,, or r and x, and the coordinate 
Y; milX of the turbulent energy production maximum. 
expressed in equation (3.37a), together with the 
simplification c1 = tin = const. for all the regimes, 
enables themethodology ofadjoining thecoefficients ,4, 

A, and U, to the respective Row regimes to be simplitied 
to a procedure which does not require the extreme 01 
the coefficient A, to be found. For the chosen value of 

the coefficient x,, if x = I/n is considered, the 
coordinate y max will be found from equation (3.37a). 
When the derivative of equation (2.8d) is put equal to 
rcro, and the coordinate Y = x,,,,, determined from 
equation (3.37a) is inserted, the following expression for 
the coefficient A, or 2Ajv. = 2A,/z, will be obtained 

dH( Y) 
2A 

2-f (l- Y)) ?H( Y) 

dH(Y) 
(3.38l 

r. 
.dY-~II(Y)(1--Y)+2LII(Y)]L 

For these three coefficients the corresponding flow 
regime will be determined by way of a numerical 
computation from equation (2.6a). [the complex 
(f/4) ReJ ; the other quantities will be determined from 
their respective equations, e.g. Y,,,, W, ,~dx, ,4,, A,, o,!,, u,, 
K, the values of which, for x, =- 0.01, 0.001. 0.0001. 
0.00001, 0.000001, are given in Table 3. From cquatim 
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Table 2. Characteristics of turbulent flow in the pipe determined on the basis of the eddy viscosity model 

% 10-e 1o-5 1o-4 10-s 1o-2 

0.00051595685 0.0016316927 
0.24974205 0.24918446 

1317.8547 416.01126 
1317.8505 415.99819 

0.004140163 0.01306979 
0.0012247362 0.0038727110 

0.059873672 0.059069072 
11.356475 11.491314 
26.957073 27.273846 
0.000776525 0.000748302 
0.99870916 

8.28029 x lo9 2.61379 x 10’ 

0.99736798 

1.1536731 

1.0003 

1.1740900 
828.88808 

1.0009 

296.48076 
0.0028363605 

0.99584818 

0.0035443052 

0.99180365 

1168946.0 334588.29 

0.0051599626 
0.247423 13 

130.91019 

0.057998414 

130.86907 
0.041126649 

11.643068 

0.012238858 
0.3183098861 
0.5 

27.616065 

8.22274 x lo6 
1.2010321 

107.66181 
0.0045531461 

0.000715738 

94582.349 

0.99390987 
1.0025 
0.98278685 

- 

(2.5), in the integration interval (0, l), the velocity at 
the center line UI, was fixed. 

From the complex (f/4)Re, with the use of 
Nikuradse relation (3.27) for the Fanning friction 

factor, both the friction factorfcorresponding to the 
chosen value a, and the Reynolds number Re have been 
determined. The values are given in Table 2. 

From the discrete values of the dependence between 
a, and Re, the equivalent analytic dependence has been 

found, 

109255.5 
a, =- Rc’.81?5’ 

which after certain adaptation gives 

(3.39) 

591.76 
Re=-. 

ao.5s02 
w 

(3.39a) 

With the aid of the friction velocity (r,/p)“’ 

= (f/2)ii2% the dimensionless coordinates of the 
inflexionpoint ofeddyviscosityy$ havebeenexpressed 

as well as the dimensionless coordinates of the 
turbulent energy density maximum y:,,,,, which are 
given, together with the dimensionless coefficient K+ + 
in Table 2. 

In Fig. 1 the total relative viscosity (v + E)/V along the 
pipe radius is represented, computed on the basis of the 
model for several values of a,. E+ near the wall, showing 
the proportionality of the eddy viscosity to the third 
power of the distance from the wall Y, is plotted in Fig. 
2. The course of the velocity Ii near the wall, where it is 
practically linear, is represented in Fig. 3 ; the velocity 
profiles expressed in dimensionless form u+ =f(y’) 
are given for the basic values of a, in Fig. 4. 

A comparison of the complex (f/4) Re dependence 
on the coefficient aw, according to the model of eddy 
viscosity (full line) and the values obtained from 
Nikuradse data for the center line velocity and the 

0.016319054 0.05 1660464 
0.24187166 0.22448007 

40.833476 12.583644 
40.705194 12.188317 

0.128282148 0.395326836 
0.038464175 0.11547985 

- 
- 

2.55758 x lo5 
1.2407182 

40.019964 
0.0060528858 

26446.865 7 

7.65814 x lo3 
1.3100513 

15.537811 
0.0083737127 

‘422.1140 
0.055955061 0.050757473 

11.871496 12.40515 
27.981235 27.730006 

0.000664352 0.000553085 
0.98502623 0.96228725 
1.0068 1.0178 
0.96177780 0.911674050 

FIG. 1. Total relative viscosity (v + E)/V = f( Y, G(,). 

friction factor (dotted line), is shown in Fig. 5. For large 
values of a, the values of (f/4) Re are given, obtained 
from the data [16] (open circles). In Fig. 6 there is a 
comparison of the computed values of the center line 
velocity U, and of the experimental data for the 
identical a,. 

In thermokinetic calculations for qw = const., the 
ratio oflocal heat flux density to heat flux density on the 
pipe wall, q/q,. occurs. This depends on the hydraulic 



FIG. 2. Dimensionless eddy viscosity near the wall i: 
= f(Y, %A. 

FIG. 3. Velocity profiles near the wall. 

5 

FIG. 4. Dimensionless velocity profiles II+ = f(y+, a,). 

parameters of the flow only, as is clearly shown by the 
relation 

4% K Jo 
For the basic values of rW the ratio q/q, is represented in 
Fig. 7, as its dependence on the coordinate Y = 1 ~ R : 
Figure 8 shows the same dependence in semi- 
logarithmiccoordinates. Theradius I?,,,,,, at which y/y, 

reaches the maximum, and which is determined from 
the condition d(q/q,)/dR = 0 leading to 

i 

H,.,. 
UR;,, = UR dR. (3.41) 

0 

is given in Table 2 together with the values of (q/q,),,, 
and the values of the radius R,, where y/qW = 1. Figure 
7 also shows the relative Reynolds turbulent shear 
stress 1,/r, along the pipe radius. Figure 9 shows the 
same dependence in semilogarithmic coordinates for 
the basic values of the coefficients E,. 

The Reynolds turbulent shear stress expressed by the 
ratio t,/~~ has been determined from 

The coordinate Y, max of the Reynolds turbulent shear 
stress maximum is determined by the condition of the 
extreme d(r,/r,)/d Y = 0 

(3.43) 

The course of the turbulent energy production rate F 
and the direct viscous dissipated energy rate VVV. as 
functions of y+, are shown in Fig. 10, together with the 
values of these quantities obtained in an experiment by 
Laufer [S] for Re U, = 5 x lo4 and 5 x 10’. 

Figure 11 shows the dependence of the coefficient K 
on the Reynolds number Re compared with data 
obtained by other authors. 

4. THE BASIC EQUATlONS OF THE 

TURBULENT HEAT TRANSFER 

Convective heat transport in turbulent flow is 
described by the differential equation [ 141 

Let us limit the problem to the solution of the case of the 
constant heat flux density on the wall qH = const. 

qw = h(T, - T,) = const. (4.2) 

If the relative temperature 0 = (T,- r)/(T, - 7,) is 
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applied where 

u(T,- T)r dr (4.3) 

for 

t 
4,25 

7 420 

$45 

aT aT aT, 
_=-A ax ax =ax = const. 
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FIG. 6. Relative center line velocity U,, =f(cr,). 

0 
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FIG. 7. Relative turbulent shear stress rJz, and the relative 
heat flux density q/q, in the pipe. 

the initial equation may be transformed into a 

dimensionless form 

;~[~R!!?]= -NuU (4.la) 

and the defining equation of the medium bulk 
temperature (4.3) may be changed into the form 

WRdR=;. (4.3a) 

For the boundary conditions R = 0 =r d@fdR = 0; 
R = 1 =sO = 0, after a double formal integration of 

equation (4.la), the following expression for tempera- 
ture will be obtained 

R 

O=Nu ’ 
s 

1 
I 

UR dR 

CR@ + Q/,1 
dR. (4.4) 

R 

After inserting the obtained expression into the 

normalizing condition (4.3a) corresponding to the 
dimensionless equation of energy conservation, the 
following relation for the Nusselt number will be 

-.--- 
~_. ..J. _ 

-_-*__. . 

400 
40-C 40-3 4O‘2 40-' 

-Y- 

FIG. 8. Relative heat flux density q/qw near the wall. 
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FIG 9. Relative turbulent shear stress I,.‘T,_ near the wall 

obtained: 

which, when the sequence of integration is mter- 

changed, may be rewritten into the equivalent form 

known in the literature as the Lyon relation [YJ 
Further, it follows from the boundary conditions for 

the relative temperature gradient on the wall that 

f4.6) 

The relations valid for laminar flow follow directly from 
the above stated relations for turbulent flow when 
$/u s 0 is inserted. By integration of the differential 

equation for the turbulent heat transport (4.1) in the 
limit of (0, r}, and after multiplying by the temperature 
gradient,anequation analogical to theenergyequation 

4 

0 20 40 60 80 
- Y+- 

FIG. IO. Course of the production turbulent energy rate cl;; and 
the direct viscous dissipated energy rate W,, near the wall. 

Fit;. i 1. Coefficient K in equation (3.27) 

(2.8a) for the turbulent momentum transport will be 
obtained which, when expressed dimensionIessly. has 
the form 

When y/q, from equation (3.40) is inserted an 
equivalent expression is obtained 



A model of eddy viscosity and eddy diffusivity of heat 491 

The first term on the LHS, W,,, has a meaning 
analogical for heat transport with the direct viscous 
dissipated energy rate in momentum transport, i.e. the 
relative density of molecularly transported energy; the 
second term W,, corresponds to the relative density of 
turbulently transported energy. The total W, expresses 
the relative density of transported thermal energy; it 
follows from a comparison of equations (4.7a) and 
(4.7b) that 

The mean value of (E,Ju)~ along the pipe radius equals 
the ratio of the integral values of turbulent and 
molecular energy densities, 

(4.9) 

The mean value ofeddy diffusivity of heat and the mean 
value ofeddy viscosity also enable the mean value of the 
turbulent Prandtl number along the pipe radius to be 
determined, 

(4.10) 

The contribution of turbulent heat transport, namely 
the relative turbulent heat flux density is given by 

_ ~ 
4t v’T 
_=- V’T’PC, _ 

4, @AT* 41, 

=&&&;&. (4.11) 

By inserting q/q, from equation (3.40) and W, from 
equation (4.7b) into equations (4.5a) and (4.4) for 
Nusselt number Nu and for the relative temperature 0, 
the following expression explaining the meaning of 
these quantities is obtained : 

Nu 1 
-= 
2 l 

s 
W,R dR’ 

(4.5b) 

0 

quantity is the total energy rate W; for heat transport 
the decisive quantity is the total absorbed energy 
density distribution W, 

5. MODEL OF THE EDDY DIFFUSIVITY OF HEAT 

As in the case of the eddy viscosity model, our 
considerations will be based on the idea of the origin of 
the eddy diffusivity of heat resulting from two 
stochastic processes (acting reversely) governed by the 
Rayleigh probability density distribution 

fq(Y) = t Ye-“‘“g, (5.la) 

(5.lb) 

By superposition (difference) of these processes the 
condition of the proportionality of the eddy diffusivity 
of heat to the third power of the distance from the wall 
(in close proximity to the wall), which is valid for fluids 
with low Prandtl numbers, may be satisfied 

E 
(5.2) 

The proportionality to the fourth power of the distance, 
found for fluids with high Prandtl numbers, satisfies the 
superposition of the processes with a more general 
Weibull distribution of the probability density 

B f(Y) = - yB-l,-Wa, 
4 

% 

(5. lc) 

f P 
4w 

(y) = _ yP-1 ,-w,.” 
CI 4w 

(5.ld) 

for the value of the coefficient jI = 2. 
Let us limit our considerations to fluids with low 

Prandtl numbers and take for the starting point the 
Rayleigh probability density distribution. It is then 
possible to write for the eddy diffusivity of heat an 
equation formally identical with equation (3.20) for 
eddy viscosity which differs only in the values of the 
respective coefficients 

3 = 24 y [Ye- 
y2,ir, + (2 _ yje-(2 - W/a, _(2 + y)e -c2 + Y)*iaq -(4 - Y)eCc4 y)2’orql 

a 

24 
ciqw Cye- Y2hw + (2 - y)e - (2-Y%“_(2+ y)e -G+Y)%w_(4_ y)e-'4-n%w], (5.3) 

s 1 

@=!!$ W;;‘dR=~ s l w 
2 dR. (4.4a) If the eddy diffusivity of heat near the wall is expressed 

R R (q/4,) by 
From the above stated facts in comparison with the 

relations for (f/4)Re and U, an analogy follows 
showing that the quantity equivalent to shear stress 
t/7, in the case of momentum transport corresponds to 

% - = K,Y3 
a (5.4) 

the relative density of the transverse heat flux q/q,,, in 
heat transfer. For the hydraulic resistances the decisive the coefficient K, is linked with the coefficients A,, A,,, 



ayr rsw by the equation 

2(‘4, -A,,) 2.4 I<,=_p__m=_-Q’ =3 (5.5) 
%%a Q%pv %plpv 

the ratio of the coefficients being given by 

A, A,, 
(5.6) 

x(4 %w 

which follows from the condition [d(s,/a)/dY], = 0. 
The coefficient A,, is the mean value of the relative eddy 

diffusivity of heat along the pipe radius 

A,,= A,-A,, = A, 

It is possible to use for the determination of the extreme 

and inflexion points or other quantities affecting the 
eddy diffusivity of heat the expressions given for eddy 

viscosity in Section 3. 
When determining the coefficients from equation 

(5.3) for the eddy diffusivity ofheat it is assumed that, as 
in the case of eddy viscosity, the distribution of 

probability density of the basic process influence is 
determined, for fully developed convection, by the pipe 
dimensions. Therefore, 

Classical,fluids 
In accordance with Corrsin’s finding of proportion- 

ality between the ratio of temperature and velocity 
microscales and the value Prl’* which was derived for 

isotropic turbulence [12], let 

A 4 = APr”*. (5.9) 

For clq = ~1, it then follows from equation (5.6) that 

“pw- TV 
--_ 

A 4u Pr”‘A w 
(5.10) 

As the thickness of the thermal sublayer in the region 
near the wall decreases with increasing Prandtl number 
[S, 141, it follows from equations (5.10) and (3.23) that 

rqw = -7, p;:2 
(5.11) 

A uw = A,. (5.12) 

For stochastic processes there are dispersions [l l] 

4-n. 
0:, = __ 

4 
!zXq = 0:, (5.13a) 

(5.13b) 

Liquid metals 
The model of the eddy diffusivity of heat in clas- 

sical fluids above may be extended to and modified 

for liquid metals which have low Prandtl numbers 
PrE (0.003,0.1> [S]. 

To determine the velocity profiles of liquid metals 
which are included in the category of Newtonian fluids 
the model of eddy viscosity may be applied without any 

changes. 

The Prandtl number occurs in both the free and 
forced convection of liquid metals raised to twice the 

power in comparison with the classical fluids [S, 23,241. 
This fact allows a simple modification of the eddy 

diffusivity model to be made. In the relation for the eddy 

diffusivity of heat of liquid metals in the region of fully 
developed convection coefficients occur which are 

linked with the values of the coefficients in equation 
(3.20) for the eddy viscosity by 

,4, = API. 

and 

X 
Eqw = -. 

Pb; 

As for classical ff uids we will put 

(5,X) 

For the stochastic processes in liquid metals there are 
the respective dispersions 

(5.16b) 

For a few hydraulic regimes defined by the value rw 
the values Nu and 0, have been computed for fluids 
with Pr = 0.72,3 and 10. A comparison of the obtained 
dependencies of Nu on Reynolds number with those 
according to the relation [25] 

Nu = 0.023 Re’ ’ Pr” 15.17) 

for n = 0.33 and n = 0.4 is given in Fig. 12. 

The values of the relative center line temperatures 
O. for fluids identical in dependence on Re are given in 

Fig. 13. The linear temperature profiles near the wall, 
computed on the basis of the model, are shown in 
Fig. 14. For Re = 94 582 (z, = 0.0001) the computed 
dimensionless temperature profiles 7” = ,f(y ’ ‘) arc 

given in Fig. 15. 
In Fig. 16 the dimensionless temperature profiles for 

Pr = 0.72 are shown. The obtained temperature 
profiles show complete agreement with the data found 
in the literature [ 14,3]. Plots of (a + Q/a for Pr = 0.72. 
3 and 10 are shown in Fig. 17. 

The dimensionless eddy diffusivity of heat, 

C 
F;+ =__“y= 3 

1 
4 u*r, a [(.f‘/2)‘/*(Re/2)Pr] 

(5.18) 

shown in Fig. 18 to depend on log Y, confirms the 
proportionality of the eddy diffusivity of heat to the 
third power of the distance from the wall [equation 

(5.3)l. 
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FIG. 12. Nusselt number Nu = f(Re, Pr). 

The turbulent contribution to the transverse heat 
flux along the pipe radius expressed by the ratio qJqw 
according to the equation (4.11) is shown for several 
regimes with Pr = 0.72 in Fig. 19. In Fig. 20 the relative 
densities ofmolecularly- W,, and turbulently-absorbed 
energy W,, are shown as functions of the dimension- 
less coordinate yt for fluids with Prandtl number 
Pr = 0.72, for regimes corresponding to a,,, E (0.001; 
O.OOOCGl). The course of the local turbulent Prandtl 
number Pr, = E/E~ along the pipe radius is given for the 
regime corresponding to tl, = 10m4 for fluids with 

(I30 m 

- a, - 

FIG. 13. Relative center line temperature 0, =f(Re, Pr) 

FIG. 14. Temperature profiles near the wall. 
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FIG. 15. Dimensionless temperature profiles T+ = f(y + + , Pr), 
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Pr = 0.72. 
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FIG. 20. Relative energy absorbed molecularly CV& Ltnti 
turbulently W,, near the wall. 

Prandtl number Pr = 0.72,3 and 10 in Fig. 2 1. In Fig. 17 

Pr, values for fluids with Pr = 0.72 for various regimes 
are shown. The value of the local turbulent Prandtl 

number on the wall Prtw is given by 

40-3 I@? 

-- y .__ 

The coordinates of the extreme value of the local 
turbulent Prandtl number may be determined from the 
following condition [equations (3.20) and (531: 

FIG. 18. Dimensionless eddy diffusivity of heat near the wall 
6: = .f( Y, r,), Pr = 0.72. 

FIG. 19. Relative density of turbulent heat flux q,/qW = f (Y. LX,.,) 
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FIG. 21. Turbulent Prandtl number Pr, = f(Pr), Re = 94 582. 

which may, for the region near the wall, be simplified to 

- Y%le - P/a, 
1 1 ( > 1 1 

e _ e - r*/Lhe - wa, _ _ _ 
u % ( > %v %j 

_ e - Y2/ue - Y2i+” 

( > 

1_ L +e-Y~/awe-Yv+” 

Lx %w 

x $ - & = 0, (5.2Oa) 
( > 

fulfilled identically on the wall (Y = 0). The relation 
(5.2Oa) is based on the simplified eddy viscosity and the 
eddy diffusivity of heat limited to two basic branches 
(with terms containing Y only). For the sake of the 
symmetry of the eddy viscosity and eddy diffusivity, 
according to the model, the extreme turbulent Prandtl 
number must be even at the center line (Y = 1, R = 0). 
The center line value of the turbulent Prandtl number is 
determined by 

For high Reynolds numbers (low CL~,,, and a,) and tlq = c( 
this can be simplified for classical fluids to 

Pr,o A P?. (5.21a) 

As well as the extremes on the wall and at the center line, 

generally there are two other extremes of the local 
turbulent Prandtl number Pr, in the interval YE (0,l). 

For individual flow regimes over a selected range of 
Prandtl number values POE (0.003, 0.1) covering 
practically the total region ofliquid metals, the values of 
the Nusselt number Nu have been fixed with the aid of 
equation (4Sa) and the temperature at the center line 
from equation (4.4). The computed values ofthe Nusselt 
number for the selected values of Pr as a function of the 
Reynolds number Re are given in Fig. 23. In Fig. 24 
values of Nu are plotted as a function of Peclet numbers 
(Pe = Re Pr) and in Fig. 25 values of the temperature 
O,, at the center line are plotted as a function of the 
Reynolds number Re. The dependences are limited by 
the line corresponding to zero contribution by the 
turbulent heat transport q, = 0, i.e. the regime 
corresponding to clqw = clq = l/n. The broken limiting 
line corresponds to the transition flow regime for 
Re 2 7000 for which the coefficients tl (< l/n), c(, (<a) 
and A have been computed from the experimental data 
ofthe friction factorfand the velocities at the center line 
U, [16]. The agreement of the computed values of the 
Nusselt number Nu with the data found in the literature 
for the region of fully developed convection of liquid 
metals is apparent. 

It seems necessary to point out that the model in 
question is valid for fully developed convective heat 
transport only, i.e. for high values of Peclet number Pe. 
For low values of Pe 2f 500, the computed values of 
heat transfer are lower and the values of the 
temperature O,, in the pipe axis are higher than in 
reality. This means that the results obtained when the 
model is used for low values of Pe are more reliable. This 
is due to the fact that for low Pe values ~~ < CI and 
aqw < a,/Pr; as for velocity profiles in the area of 
low Reynolds numbers, Re 7 7000, it is necessary to 
consider CI < l/n when applying the eddy viscosity 
model [ 161. 

6. RECOVERY FACTOR 

The determination of heat transfer described in the 
preceding section may only be used when the influence 
ofdissipatedenergyonthetemperatureprofileneednot 
be considered and when the dissipated energy is 
negligible. When the gases flow at high velocities the 
influence of the dissipated energy on heat transfer is 
considerable. 

Knowledge of the eddy viscosity and eddy diffusivity 
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FIG. 22. Turbulent Prandtl number Pr, = f(~(,), pr = 0.72. 
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FIG. 23. Nusselt number Nu in dependence on Reynolds number Re for liquid metals (Pr = 0.003-O. I). 

of heat allows the influence of the dissipated energy on 
heat transfer at high velocities to be determined with 
the aid of the recovery factor r** and the adiabatic wall 
temperature T, ad, and the determination of the 
dissipative heat transfer for the removal of dissipated 

energy. Although the heat transfer influenced by energy 
dissipation must be taken into account in compressible 

fluids, it is possible to base further considerations on the 
relations derived for incompressible fluids and take the 
results for limiting values. 

The energy equation of turbulent flow (2.9, after 
being multiplied by p, gives the local density of the 
dissipated energy in unit time (W m- 3). Using the RHS 
of equation (2.8) it is possible to write for the local 
density of heat sources in the turbulent fluid flow 

r f,da 

zus Z’ 
(6.1) 

To describe the dissipated energy transport across the 
Row, equation (4.1) without its RHS may be used. The 

zero value of the RHS corresponds to the density of the 
wall heat flux relevant to the dissipated energy ; in this 
case any medium temperature increase does not occur 
along the path, i.e. aT/ax = 0. The source term q. 

however, must be added to the equation. The 
differential equation describing the thermal conditions 
in the medium on removal of the dissipated energy has 
the form 

I d 
F dd (6.2j 

where i is determined from equation (6.1). Using the 
equation for the heat flux density at the wall 
corresponding to the dissipated energy 

y;,* = r,n, = $uj = h**AT**> (6.3) 

equation (6.2) may be transformed into the dimension- 
less form 

If R2 
= 2 4 Rei,+-;7; Nu** (6.4j 

where 

@** = fT- T-J** 
AT** 

_____ 7- __ ____. _ _~. ., 
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FIG. 24. Nusselt number Nu in dependence on Peclet number Pe for liquid metals (Pr = 0.003-O. I). 
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and 

2h**r 
Nu** = .-..+ 

1 

The term R’/[(v+E)/v], according to the equation 
(2.8e), corresponds to the local total dissipated energy 
rate. 

After the differential equation (6.4) has been integrated 
twice for the boundary conditions R = 0 S- dO**/dR 
= 0 and R = 1 =S W* = 0 the following equation for 
the temperature profile is obtained : 

@** = 1 fRe Nu** 

24 

s l s R {R3/C(v + Wl)dR 
X 0 

R C@ + WI 
dR. (6.5) 

R 

After inserting equation (6.5) into the normalizing 
condition (4.3a), using equation (2.5) for the fluid 
velocity, and integrating the expression for the Nusselt 
number corresponding to the dissipated energy 
removal, the result is 

FIG. 25. Relative center line temperature 0, for liquid metals. 

1 
Nu** = 

’ 
(6.6) 

[(f/4)Re]’ [’ R( [’ {R/[(v+#v]}dR dR dR 
Jo \JR 

The temperature gradient at the wall then is 

(6.7) 

From equation (6.3) the temperature difference 
between the medium and the wall corresponding to the 
dissipated energy removal may be determined as 

** 
4w 

2 
US AT**=---==**- 

h** 4 25 (6.8) 

which may be expressed by means of temperature 
increase u,2/2c, corresponding to the total annihilation 
of kinetic energy of the flow, as well as the auxiliary 
complementary factor r,**. Equation (6.8) may be then 
adapted into the dimensionless form 

p* _f a2 Pr 
4 -Nu** (6.8a) 

For the auxiliary complementary factor I,** the 
following expression results from the equations (6.6) 
and (6.8) 

For the laminar flow where E/V = E,/U = 0 and 
(f/4)Re = 4, 

r** = SPr. 4 

The chosen approach enables heat transfer at high 
flow velocities to be interpreted as the superposition of 
convective and dissipative heat transfer. This is made 
possible by the fact that the initial differential equations 
(4.la)and(6.4)arelinear. It is then possible to superpose 
the temperature profiles (expressed in dimensional 
form). Heat flux densities at the wall may be also 
superposed if the corresponding direction of heat flow 
is respected. 

For several flow regimes (defined by the value cr,) of 
media with Pr = 0.72 the values of the auxiliary 
complementary factor r,** determined from equation 
(6.8b) are given in Table 3. In Table 4 the values of the 
factor r:* for media with Pr = 0.67, 0.72 and 0.8 for 
CC, = 0.00001 (Re = 334 588) are given. The values of 
Nusselt number Nu** for dissipated energy transfer 
determined from equation (6.6), as well as the values of 

(6.8b) 



Table 3.Recoveryfactorr** = f'(Re), Pr = 0.72 

a, 
Re 
r** 
.&L** =,f‘Re Pr,!r:* 
Nu 
K** = Nu**!'Nu 
r** =(,**- l)r,** 

lamin. 0.000 I 
< 2300 94582.349 

5,!3 Pr mu 1.2 0.85546253 
48/S == 9.6 362.4542 

48,ll = 4.x 183.1476 
11:s = 2.2 1.9790 
2 Pr 1.44 0.X37497817 

0.00001 0.000002 
3345X8.29 x03923.29 

0.84291731 0.842614.33 
1012.9873 2077.4X85 
507.7732 1043.4736 

1.9950 19913 
0.838702724 ~J.X352X3585 

convective Nusselt number Nu determined from the 
equation(4Sa)andtheratioK** = Nu**/Nu(theratio 
of dissipative and convective heat transfer) are also 
given in these tables. 

Heat transfer at high flow velocities is defined by [2X] 

where 

signifies the adiabatic wall temperature. The recovery 
factor r** gives the quotient of the adiabatic wall 
temperature increase ATas* due to flow energy 
dissipation and of the temperature increase $/2c, 
corresponding to the total annihilation of flow energy 
expressed by the bulk velocity U, 

AT** r** - ~_?L 
- (u,z!2c,) 

(6.10a) 

The adiabatic wall temperature TV ad or the value of the 

recovery factor r** may be determined by the 
superposition of the dissipative and convective heat 

transfer if the heat flux supplied from outside CT,,, is 
considered identical with the heat flux at the wall &* at 
the dissipated energy removal. For this limiting case 

ATas* = AT-AT**. (6.11) 

It follows from the equality y,, = (-)yz* that 

hAT = h**AT** (6.12) 

and therefore it is possible to write 

AT h”* NlP 

.A?* = -/,- = 
_ ~ K**, 

NU - 
(6.12a) 

For the recovery factor, with regard to the equations 

(6.8) and (6.12a), we may write 

r** = (K** - l)r** 4 (6.13) 

The values of the recovery factor Y** determined from 
the equation (6.13) are given in Tables 3 and 4. The 
resultant values lie in close proximity to the value PY’ ’ 
which is used in practical computations based on the 
experimental data as the value of the recovery factor 
r** in the pipe [IS, 211. For laminar flow in the pipe 
1.** = 2Pr. 

7. CONCLI!SION 

The models in question regard the eddy viscosity and 
eddy diffusivity of heat as the probability density 
distributions of the solid wall influence into the fluid 
flow. The character of the eddy viscosity and the eddy 
diffusivity of heat, described by reputable authors. and 
their proportionality near the wall to the third or fourth 
power of the distance from the wall. suggest that the 
eddy viscosity and the eddy diffusivity of heat result 
from two similar stochastic processes acting in opposite 

directions. The former process occurs mainly in the 
turbulent core and is practically identical for all regimes 
of fully developed flow. The latter process occurs 
mainly in the proximity of the wall and its reach 

decreases in flow regimes defined by high Reynolds 
numbers. 

The model of eddy viscosity accounts for some facts 
found experimentally in turbulent how. In the first 
place there is the physical explanation ofthe position of 
the boundary between the turbulent core and the buffer 
layer, usually at the point where 1.~’ = 27 30, by the 
position of the intlexion point of the eddy viscosity 
curve. The turbulent energy density maximum 
production position corresponds to the values of the 
boundary between the turbulent core and the viscous 
layer given by the Blasius relation. The value .r- = 5 is 
usually regarded as the viscous sublayer in which the 
contribution of turbulent transport may be neglected. 
According to the model there is a ratio F:.!v G= 0.1 
corresponding to this boundary. For the ratio i: 5 

Table 4. Recovery factor r** =,f(Pr), Re = 334 588 
_.~__._ - ~_ 
Pr 0.67 0.72 
r** 
.$u** Re 

0.79833659 0.84291731 
=.f Pr:'r,** 995.27999 1012.98730 

NU 494.10933 507.77320 
K** = Nu**/Nu 2.0142910 1.99496015 
r** =(,**-I),** 4 0.8097456 0.83870272 
Pr”2 0.81853528 0.84852814 

0.8 
0.91266830 

1039.52162 
528.9445 

1.96527541 
0.88097627 
0.89442719 
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= 0.01 there is a corresponding dimensionless distance 
from the wall yi G 2.5. 

The advantage of these models is in the fact that their 
mathematical expression makes use of normalized 
functions so that the proportionality coefficients 
represent the mean values of the quantities in question. 
The coefficients A, or A,, represent directly the mean 
value of the relative eddy viscosity (E,/v)~ or eddy 
diffusivity of heat (s&r), and are, moreover, in their 
dimensionless expression A: = E: or A; = E; 

practically constant over the whole area of the 
developed flow. 

The connections between the models of eddy 
viscosity and eddy diffusivity of heat are expressed by 
means of a simple bond between the coefhcients which 
occur in the analytical expressions describing the 
models, namely by the factor Pri112 or Pr-l/’ in 
classical fluids and by the factor Pr ’ ’ or Pr - ’ in liquid 
metals. These bonds correct the analogy used by some 
authors between heat transfer and momentum transfer 
which is based on the direct proportionality between 
the eddy viscosity and the eddy diffusivity of heat. 

The agreement of the basic flow and thermokinetic 
characteristics determined according to the models 
with the experimental data about these quantities 
stated by both reputable authors and the basic 
literature on this subject is so obvious that any 
comparison seems needless. 

The model of eddy diffusivity of heat may also be used 
for the description of mass transfer conditions. All the 
relations given above may be used after substituting 
Schmidt number SC for Prandtl number Pr. In a general 
sense though, there are more similarities between mass 
transfer and heat transfer at a constant wall 
temperature, T, = const. The influence of the wall 
temperature distribution, or possibly of the wall heat 
fux distribution, on heat transfer plays an important 
role especially in fluids with very low Prandtl numbers, 
i.e. in liquid metals. 

The dimensionless differential equation of heat 
transfer for the case of boundary condition T, = const. 
has the form [22] 

From its solution the relation for the tem~rature 
profile follows as 

dR (7.2) 

as well as the relation for the Nusselt number [22] 

Nu, = 
1 

is 
RO,UR dR! 

(7.3) 

1 1 

2 
1 h 

UR 
0 R ;[(a+EJ/a, f dR dR 

Formally identical dependences which differ only in the 
terms z/z, and q/qw are valid both for heat and 

momentum transport. In the case of flow, the decisive 
quantity is the shear stress distribution r/r,. In the case 
of heat transport, heat flux density distribution, q/qw, is 
decisive, being dependent on the thermal boundary 
conditions. With the boundary condition q, = const., 
the ratio q/q,,, depends exclusively on the flow 
conditions. 

The eddy viscosity model enables the local direct 
viscous dissipated energy rate WV to be determined as 
well as the turbulent energy production rate U: also 
transformed by dissipation into heat. Knowledge of the 
local heat sources in the flow, in connection with the 
eddy diffusivity of heat model, enables the influence of 
medium flow velocity on heat transfer (so called 
recovery factor r**) to be determined, as well as the 
dissipative heat transfer h**. 

Both the eddy viscosity and eddy diffusivity of heat 
models may also be applied to other geometrical 
configurations ofchannels and, after some adjustments, 
to Aow aiong solid surfaces. 
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APPENDIX 

DISCUSSION OF EDDY VISCOSITY 
AND EDDY DIFFUSIVITY OF HEAT MODELS 

Connection of the models with mivinq length and with mixiny 

celocit v 
Bdd~~uiscosity model. The suggested model of eddy viscosity 

is in full agreement with the conception of turbulent 
momentum transport produced by Prandtl and perfected by 
Karman, which is based on an analogy with the mechanism of 
molecular viscosity from the kinetic theory of gas. According 
to this theory the molecular kinematic viscosity is 
proportional to the product ofthemean translational velocity 
of molecules I? and the mean free path Y 1321 

I 7 0.4991;/. (Al) 

Analogically, eddy viscosity may also be expressed as 
proportional to the product ofthe transverse mixing velocity u 
([o] = m s I) and the turbulent mixing length 1,, ([I,] = m), as 
in the relation 

i; = 2nl 1. 

which may be rewritten into the dimensionless form 

(A~J 

I’ I’ r, ’ ’ 

When compared with equation (3.20a) for the eddy viscosrty, 
the meaning of the terms and coefficients in this expression will 
be obvious. The expression in square brackets [equation 
(3.20a)l corresponds to the resultant turbulent relativemixing 
length L, and the expression 2A/a before the brackets to the 
dimensionless transverse mixing velocity 

2A 2vr, 
e.. (A41 

‘a 1’ 

The expression in brackets may be expressed according to the 
equation (3.20) as the difference between two partial 
expressions containing only the terms with the coefficient d or 
a,, each of them corresponding to the relative length (the 
relative mixing length in particular), 

L= ye-'h+(2_ y)e (Z-Y)'1 

_(2+ y)em'2' “‘“-(4 Y)e (4mr)2’Z, (AS, 

which dominates in the turbulent core and of the relative 
length 

L, = ye~Y""Y+(2_y)e-'L-112iZI 

_(2+y)e~'~"Ylz'"-(4_y)e-'"--Y"",. (A6) 

limiting the first length in the region near the wall. 

L, = I<pL, =z H(Y) tA7) 

The relative mixing velocity ^I = u/u, may be obtained from 
the ratio of the dimensionless mixing velocity Re, and 
Reynolds number Re corresponding to the bulk velocity 

The relative transverse mixing velocity f is shown as a 
function of a, in Fig. 26 together with the values of the velocity 
Y^ determined on the basis of the model with the use of the 
coefficients obtained from Nikuradse’s and Rothfus’s data. 

The course of the relative turbulent mixing length L, = I,/rw 
along the pipe radius for a = 1 .irt and for a few values of the 

0,012 ) / b 

- 3,011 - MODEL 

. NIKURAOSE [31 

3,010 - o ROTHFUS 

I;IG. 26. Relative mixing velocity. 
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coefficient cr, is shown in Fig. 27. For the sake of comparison 
the mixing length according to Nikuradse expressed by the 
equation (A9) [15] is also shown, 

L = 0.14-0.08R2-0.06R4. (A9) 

The value of the integrals expressing the mean value of the 
relative mixing lengths is equal to one half of the coefficient 
values a: and a, 

L,,L 
1 

(AlOa) 
rW s 0 

LdY=;, 

L,, = !z = 
FW s 

1 

P 
L,dY=?, (AlOb) 

a-u, 
L,, = L, - L,, = -. 

2 
(AlOc) 

For the coefficients A, A,, A, there are the following 
expressions : 

2Dl 
A=L=Re,L,, 

” 
(Alla) 

A, = - = Re, L,,, 
v 

(Al lb) 

2nl,, 
A, = __ = Re, L,,. 

Y 
(Al lc) 

If we know the transverse mixing velocities D or Y or Re, 
and the mean mixing lengths 1, or L, or L,, and L, the time 
scale of existence of the turbulent elements in the core, as well 
as in the flow region near the wall, can be determined 

1, t, = -, 
D 

(A12a) 

1 
t zz “p wI 

D’ NW 

1 
tt, = t,-&, =‘. 

D 
(A12c) 

In the dimensionless expression by Zhukowsky number Zh 
[20] the time characteristics will have the form 

(A12d) 

&2!!+$=~, (A12e) 
TW E 

Zh,+?$Zh-ZhW=~ $-;. (A12f) 
L ( > w 

The mean values of the relative mixing lengths Ls, L_, LB and 
the respective values of the Zhukowsky number Zh, Zh,, Zh, 
are given for several values of the coefficient a, in Table 5, 
together with the values of the respective relative mixing 
velocity “P’ or Re,. 

Equation (3.22a) for the coefficient K in equation (3.21) may 
be rewritten using the Zhukowsky number Zh corresponding 
to the turbulent core and Zh, for the region near the wall into 
the form 

K=2A,=?! I-“” +&, (A13) 
c&z, cG& ( > a v 

Eddy diffusiuity of heat model. The explanation of the 
physical meaning of the coefficients A,, a4 and apW occurring in 
equation (5.3) for eddy diffusivity of heat may be based, 
similarly as in the case of eddy viscosity, on an analogy 
between molecular and turbulent transport. For molecular 
thermal diffusivity, from the kinetic gas theory the following 



FIG. 27. Relative mixing length 

equation is obtained L32j 

(, = ] ,259 -I;’ 
(CJC,J 

(A14) 

statingtts proportionality,asin thecaseofmolecular viscosity, 
to the product of the mean free path e and the mean 
translational velocity of molecules V. With the use of the ratio 
\,;‘a = Pr and equation (Al) for molecular viscosity we may 
write 

Theeddydiffusivityofheat. by analogy withtheeddyviscosity, 
may he put proportional to the transverse mixing velocity I, 
and to the difference between the two partial characteristic 
lengths Land L,. Each of the terms, however, will he corrected 
by the complementary function of the Prandtl number Pr or 
possibly of the distance from the wall Y 

% - = 2: if(Pr)[Lq(Pr, Y)-L,g,(Pr, Y)]. (Ale) 
(1 

From a comparison with equation (5.3) for the relative eddy 
diffusivity of heat, the complementary functions .f(Pr), 
g(Pr, Y), and g,(Pr. Y) may he determined. For x4 = LX the 
complementary function is 

q(Pr. Y) = 1. (A)7) 

Forthefunction~l,(Pr, Y)atcc,, = r,/(Pr’~‘) valid for classical 
fluids it is possible to write 

The relative eddy diffusivity of heat is then connected with the 
dimensionless mixing velocity Re, or Pe, and the local values 
of the characteristic mixing lengths of the turbulent flow 1, and 

L by 

1.0 _ Re, Pr’.2[f,_ L,ce-- Yh)VII 2 ! i, 

0 

7 $ [L-L,(e I- 1*f”“l “I, I,4201 

For the relative mean eddy diffusivity of heat, the dependence 
on the values of the characteristic mixing lengths I_ and I,,.. is 

For liquid metals,for which thecoeffictents ofeddy vtscoatty 
and eddy diffusivity of heat models in the region of developed 
convection are connected by the relations .4, = 4 Pr and 

%w = x,iPr, for IX,, = cz the complementary functions result 
in 

f(Pr) = 1. !-\ZJi 

q(Pr. Y) = 1, !A171 

g,(Pr, Y) = (e ‘2’z*)(pr I’ , A 2.7 j 

For the relative eddy diffusivity of heat of liquid metals 

i: 

with a mean value of 

In view of the equations (Alla) and (Al lb) it is posstble io 
express the dependence of the coefficients A, and A,, on the 
transverse mixing velocity u and the mixing lengths I, and !,. 

For classical tlutds 

and for liquid metals 

tA2Xi 

For the mean eddy diffusivity of heat of classtcal Rut& the 
-.- 

As the terms including (2- Y), (2+ Y) and (4- Y) have very following expression may he derived : 
low values, it is possible to simplify this to 

Y’PI ),U\\ a,,=2u[P;~ -;;I, 1.429) 
<,*(pr, y) A :~L --- 

emYh. 
_ _ (,mI”‘Z,)(f’r’ ‘-I), (Alga) 

which for liquid metals has the form 
For the complementary functionf‘(Pr) at A, = A Pr’.‘. valid 
for classical fluids, aqs =2u i,-:_; 

I I 
(AX)) 

.f’(lC) = I prl’Z- (A19) For a given regime of the fully developed How and heat 
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transport, the following relation between the coefficients of 
eddy viscosity and eddy diffusivity of heat is valid, independent 
of Prandtl number, 

Aa, = A,a = A,a,, = A,,a, = const. (A31) 

With the use of the equation (A4) for the dimensionless mixing 
velocity Re, and the relations (AlOa) and (AlOb) for the mean 
values of the relative mixing lengths L, and L,,, equation (A31) 
may be rewritten into a physically more illustrative form 

Aa, = 2Re, L, L,, = const. (A3la) 

in which thermophysical quantities do not occur. 

Mathematical description of isolated vortex dl#iision in 
connection with the eddy viscosity and eddy diffisivity of heat 
models 

For the local vorticity of a diffusing isolated vortex [30,31] 

l- 
a=---e -r*2/t4vrrj 

4avt, 
(A32) 

while the initial circulation f may be expressed by 

I- = 27tr*c, = 2ar,c,,, (A33) 

where cr or crO is the circulating velocity on the general radius 
r* or on the radius r* = r,,,. If equation (A32) is transformed 
into the dimensionless form 

r,r**= 2r,cro r* 1 e-(r*~/r,2,/~4~Z,/rw21, (A34) 
V V rw 4vtJri 

If the axis of the isolated vortex is located on the pipe wall we 
may write (r* = Y, r*/r, = ylr, = Y) 

‘-y*= 2r,cro 1 
V 

___ m Yc-tY’~(4v’r~r~2)1, (A35) 
V 

After insertion 

2rwcro -= Re,=f 
V KY 

and 

we will get 

vrr 
- = Zh, 2 
rw 

(A37) 

The velocity fields of the two superposed diffusing isolated 
vortices with the initial circulation r and Y, in the opposite 
direction stopped at times tr and t,, are described by 

y*-*,) = Y$ ye-W4Zhr 

r 

- 2 ye-Y”‘4Zhr,, (A39) 
l-w 

From acomparison ofequation (A39) with the basic branch of 
the eddy viscosity model [according to equation (3.19)] 

it follows for the relative eddy viscosity the proportion 

(A39a) 

and for the individual coefficients the following expressions 

(A40a) 

a, = 4Zh,,, (A40b) 

(A4la) 

(A4lb) 

For the relative circulation velocity qr or qrw it follows 

Cl-0 Rer - 
cPr=c= Re’ 

(A42a) 

(A42b) 

The connection between the magnitude of the relative mixing 
velocity Y = ReJRe, taken into account in theexplanation of 
the eddy viscosity mechanism based on the mixing length, and 
the value of the relative circulation velocity qr or qrw is 
expressed by the relations 

‘Pi = 4V Zh, = 2Y L,, (A42c) 

qrw = 4Y Zhrw = 2V L,, (A42d) 

For a = l/n we may write 

“V = ncp,. 

With regard to equation (3.23) we may write 

Re, Re,, l- Y: r, r$ cro rZ __=__ _=__ 
4Zh, 4Zhrw 4nt, v2 4nt,, v2 2t, vz 

3 crow rw 
2trw 9. 

For a = l/x we may write 

Re, r 

4Zh,=v 

For the relative eddy viscosity we may write 

(A43a) 

(A43b) 

+(2- Y)(e- rz- Y)‘/‘Uhr _e-t- Y)+%Zhru) 

-(2+ Y)(e- (2 + Yl*/U’h,_e-~Z+ Y)‘/4Zhpw) 

-(4_ Y)(e-(4-Y)‘/4Zh~_e-(4-Y)2/4Zhy_), (Au) 

which corresponds to the course at different times t, and trw of 
the ‘frozen’local vorticity of the two diffusing co-axial isolated 
vortices with their axis on the wall and with a different and 
opposite initial vorticity expressed by velocity circulation I- 
and I-,, while the ratio of the initial circulations is identical 
with the ratio of the times t, and t,, 

r tr -=_, 
rw trw 

(A45a) 

For a = l/n we may write for time tr = r$(4nv) or 

Zh, = ; = & = 0.0795774151. (A45b) 

Between the time scales used in considering the eddy 
viscosity mechanism on the basis of the mixing length, namely 
ts and t,, and the tunes t, and t,, there is the proportionality 

Consequently, there is also proportionality between the times 
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t, and rW, and the initial ctrculatron 

f- r, 

J-, L’ 

For r = l/n we can write 

Re, = II Re,, 

(A46b) 

(A47a) 

The proportionality coefficient K in theequation(3.21) may be 
expressed with the aid of Zhukowsky numbers Zh, and Zh,., 

JN- 
= 16Zh,Zh,, r 

i > 

l-2 (A48) 

For the mean value of the relative eddy viscosity we may 
write 

Re, - Re,, 
= 

\ 2 
(A49) 

In the diffusion of the isolated vortex the change of the 
momentary circulation velocity cr-, to the stationary initial 
velocity cr ratio is governed by the expression identical with 
Rayleigh distribution 

d(cr t/cd 2r* _r.z,4v, 
z-e 1. 

dr* 4vcr 
(A50a) 

In the dimensionless expression the relation (A50a) has the 
form of 

(A50b) 

which follows from the derivation of the momentary velocity 
course (A51) that is formally identical with equation (3.10) for 
the distribution function F(Y) [23,24] 

crrl 
-= I--em r***bW, = , _-e-Y2,‘+ = F(Y), (A5J) 
(‘r 

For eddy viscosity we can then write 

The connection between the momentary shear stress TV_, of 
the isolated vortex and the initial stationary shear stress 7,. is 
expressed directly by the change 

d(cr-tic,) rw 71.-r 1 
dY =i 1’ /’ cr 

(A53) 

where 

A further expression of the eddy viscosity follows from a 
transformation of equation (A50b). If the momentary local 
vorticity CI or R, is replaced by the angle velocity o or w, [30] 

n 
(0 = -, 

2 
(A55a) 

Qw 
CO,=- 

2 
(A55b) 

(DWYW = -u, 
Rt 

(AhOb) 

Relations analogous to equations (A56), (A59) and (A60) may 
also be written for other terms of the eddy viscosity expression 
containing the coordinates (2 - Y) or (2 + Y) and (4 - Y). The 
momentary fictitious peripheral velocities are connected with 
the components of the relative mixing length by 

(p,y_(;uy 1,~ 

1 - ” r, 
, (A60c) 

or 

(ASRb) 

and if the momentary fictitious peripheral veloctty ofvorttces 
is introduced 

or 

(‘w, = (0, I A56a) 

cWv = <‘Q,,_, (AS6b) 

we may obtain an expression equivalent to the first term of 
equation (3.20a) for the eddy viscosity 

If we put 

tA5’7) 

(ASXa) 

or 

2rWcUyW 
__- = Re,,,,,. 

I’ 

we can then write 

The fictitious peripheral vortex velocity may also be expressed 
as a relative one 

or 

(A60a) 

(P<‘JIIyW coyw l,, 

‘/- 
(A60d) 

n ra 

The mean value of the relative eddy vtscosity may then be 
expressed by means of the mean momentary fictitious 
peripheral velocity c,,, or c,,,,, 

or 

c’,,, CPUJ, L 
(A62a) 

V Y’ ra 

=L,$ 

“-=!%+!C~Lus_!~. (A62b) 
D r, 

Itfollowsfromacomparisonofequations(A49)and(A61)that 

Re,. R+, __=__ = 2. 
Re,, Re,,, 

Similarly, we may introduce the hctttious reduced 
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peripheral velocity c,s or c,sW related to the radius y = rw, 
namely 

coo = wr, (A63a) 

or 

C”OW = WJ, (A63b) 

and then write the proportion 

$ - 2(&YLJ, (A64) 

where 

or 

x _ YCmow 
Ymw - -. V 

(A65a) 

(A65b) 

The same procedure as in the case of eddy viscosity may be 
applied in the mathematical expression of the connection 
between the isolated vortex diffusion and the eddy diffusivity 
of heat. Analogously, we may write 

; N $QJ+,,). (A66) 

For liquid metals 

t @I- = t, Pr, (A67a) 

t ql-w = trw (A67b) 

Fo, = Zh, 
( > 

= & , (A67c) 

Fo,, = 2, (A67d) 

where Fo, = at,Jr~ or Fo,, = at,,,& are Fourier numbers. 
For classical fluids 

2A Prl” Re, Pr 

a =4Fo,, 

2A, Przi2 Re,, Pr 
=- 

a, 4Por,rC ’ 

(A68a) 

(A68b) 

(va)“’ tqT. atri- 
ForK=--=- 

Pr rb prWrZ ’ w 
(A69a) 

(~a)“’ t,,, at,,, 
PorwK = __ - = - 

Prr: w p#/ZrZ ’ (A69b) 

where Fo,, and Fo,,, are modified Fourier numbers. 

Summary ofthe models 
For both theeddy viscositymodeland theeddydiffusivityof 

heat model there are three suitable physical interpretations 
which do not contradict each other. Also the dimensionless 
complex 2A/a or 2A,/a, allows different interpretations. 

(1) Eddy viscosity may be interpreted as the result of a 
mixing process characterized by the constant transverse 
mixing velocity and by a certain characteristic length which 
may be split into two components. The local magnitude of 
both the components is dependent on the distance from the 
wall while the course of the mixing length in the core is 
practically identical for all regimes of developed flow. Much 
closer to reality is the idea of two mixing processes with the 
mixing velocities of the same magnitude but of the opposite 
direction (u, = -a) and with different local values of the 
mixing lengths (I, i I). The complex 2A/a or 2Aw/a, expresses 

the dimensionless mixing velocity in the form identical with 
Reynolds number in considering the mixing velocity as 
characteristic 

2A 2or 
- = 2 = Re_. (A701 

a Y 

(2) The mathematical description of the model is identical 
with the mathematical description ofdiffusion oftwo co-axial 
isolated vortices of opposite direction with axis on the wall, 
‘frozen’ at certain times. The time of stopping the basic vortex 
expressed in the dimensionless form Zh, is constant for the 
developed flow, while for the other vortex the time ofstopping 
decreases with increasing Reynolds number. The complex 
2A/a may then be expressed by the ratio of the dimensionless 
circulation velocity Re, or Re,, and the dimensionless time 
Zh, or Zhrw until the fictitious stopping of the vortex 

2A Re, Re,, 

a 4Zh, 4Zh,, 
(A71) 

This ratio corresponds to the dimensionless time change ofthe 
circulation velocity. For the dimensionless expression of the 
time change of the velocity, namely by the mean value of 
retardation cJ2t, = crow/2trw it is necessary to supply the 
factor rQv’ 

2A crO ri 3 
crow rw 

-=-7=-- a 2t, v 2t,, vZ’ 
(A72) 

(3) The statistical conception ofthe problem, on the basis of 
which the eddy viscosity model has been derived, appears to be 
the most suitable approximation. Eddy viscosity is viewed as 
the result of two stochastic processes, the basic one being 
limited by the dimensions of the channel, with its basic 
parameters subsequently constant (a = l/n) for all regimes of 
developed flow. The other process, which is of a lesser reach (its 
effect being dominant in the wall region) depends on the 
Reynolds number. 

Analogously as in the case of the physical idea of the two 
diffusing vortices, the time scales of the stochastic 
processes may be obtained by replacing the dispersion 
expressed dimensionally, C$ = o:r& by the product of time t, 
and kinematic viscosity v, 

C7; = t,v (A73) 

or by replacing the dimensionless dispersion us directly by 
Zhukowsky number Zh, 

(A74a) 

&, = Zh 
vt,, 4-n 

0W =1=-x,. 4 
(A74b) 

rW 

There is a proportionality between the time t, or t,, in 
expressingeddyviscosity by means oftwo ‘frozen’vortices and 
the time scales t, or t,, 

: = 2 = 2 = 2 = y = 0,858~$C734fjl. (A75) 
r-w 

For the relative eddy viscosity we may then write, analogically 
to equation (A44) 

Re, 
: = [4,(4--zx),Zh, CY(e- 

YW/(4--nWh, _ e- Y'lWWnllZh,, ) 

+(2- Y)(e- (a- Y)'/14/(4-nwho _e-(2-rl*"4"4~'"Zh._ 
1 

-(2+ Y)(e- (~+Y)~wK- n)~zh~_e-(2+r)*/r4/(4-~)~~h~~ 1 

-(4-YMe- _ (4 Y)2/[4/14-n,lzh~_e-(4-Y)'i[4i(4-n)lZh -“)I> 
(A76) 

where 

Re, = Re, = 2A. 



To the value ‘x = l/n there ts the corresponding dispersion 
0: = Zh, = (4-n)/4n = 0.06830988614 = const. and the 
standard deviation rrr = (0:)’ ’ = 0.261361004 = const. The 
coefficient s(,, however, depends to a considerable extent on 
Reynolds number Re, or on the complex (J/4) Re.The values of 
the time scales Zh,, = u:~ are given in Table 6 together wtth 
the mean values of the Rayleigh distribution nw according to 
equation (3.11). 

The formal agreement between the stochastic model ofeddy 
viscosity and the velocity field of the ‘frozen’ isolated vortices 
allows the complex 2A,la to be written as 

2A RC, Re,, 

a [4/(4-n)]Zlt, = C4:‘(4-rr)]Zh,,’ ‘A77a’ 

where 

and 

Rc, = Rr, = 2A 

Rc,, = Re, w = 2A, 

or 

2A 4-n cf10 r;: 4-n <‘nOw r; 

r/ 2 
(A77b) 

1 ,, r2 2 I,, Y2’ 

where co0 = crO and L’,,,~ = (‘rO% is the fictitious circulation 
velocity and the ratios 

4, caO 4-x (‘“OS (‘1UJa “I-0 

2 t, 2 I,, zt,, 2tr 

are the mean value of retardation. 
The equations (A72) and (A77), expressing the complex 

ZAja, are formally identical with 

Galileo number Ga = y(&v”), 
Archimedes number Ar = g(Ap/p,)(r:/v2) and 
Grashof number Crr = g(ATiT,)(r~/v’) 

in which the first term corresponds to the velocity variation in 
time, namely the acceleration or reduced acceleration, and the 
term &iv’ is identical in all the criteria. 

Conclusions analogical to those drawn from the eddy 
vtscosity evaluation from the point of view of mathematical 
statistics, may also be reached in the case of the eddy diffusivity 
of heat. To obtain the time scales of the processes in turbulent 
heat transport, namely Fourier numbers Fo, and Fo,,, it is 
sufficient to replace the value of the coefficient 4 at Fo, or Fo, u, 
in equations (A67c) and (A6Xa,b) by the value 4/(4--n). The 
equation (A75)may also be applied to heat transport, resulting 
in an analogical proportion 

The eddy viscosity model enables the decisive basic 
hydrodynamiccharacteristicsofthedeveloped turbulent fluid 
flow to be determined without the knowledge of any further 
experimental data. 

With the use of the values given in Table 2 an approximate 
proportion may be found between the expression (f,‘2)“‘Rr. 
which represents the Reynolds friction number Re*, and the 
complex 2.4 ‘:! (t.e. the dimensionless transverse mixing 
velocity) 

or, in dimenstonal form. 

The coefficient of proportionality k ranges m the limit of the 
values of k = 2.X for low Reynolds numbers and k = 2.55 for 
high Reynolds numbers. The mean value of the coefficient is 
k = 2.675 With the use of the preceding proportion the friction 
factor may be determined from the values of the coefficients r 
and rw or A and A, and from the values of the complex 
(f!4)Re : 

1:2 _ (1:4)Re 

k(2.4;~) 
(4X0) 

The proportionality between the transverse mixingvelocrty 
n and the fictitious turbulent friction velocity u*,,,,, 
determined from the maximum turbulent shear stress rImdx 
instead of the shear stress at the wall z, displays bettet 
agreement. 

The proportion in a dimensionless form is then 

For the coordinate Y = YI,,x, obtained from the equation 
(3.43) and using equation (3.42) we may determine (~JT,),,,,. 

If WC use the values from Table 2 the proportionality 
coefficient k, in the observed region of parameters will range 
from k, = 2.67 for low Reynolds numbers to k, = 2.63 for high 
Reynolds numbers Re. If the deviation of 0.77; is taken into 
account the value of the proportionality coefficient k, = 2.65 
can be taken as constant. An expression for the friction factor, 
i,;t;on (AX2a) which is analogous to equation (AXO)] may 

Table 6. Time scales and mean values of the stochastic reach of the wall into the fluid flow 
__.___~~ ~~ ~ ~_~ ~~_ ~ ~ ~. 

% 

_._______.__~~_~_..____.._‘o-~~_~ 5 lo- 4 10-J ,O -2 

___~__~ ~~ -._._.._ ~__ ~_. 

‘I* 0.0008862269255 0.002802495609 0.008862269255 0.02802495609 0.08862269255 
& = Zh,, 2.146018365 2.146018365 2.146018365 2.146018365 2.146018365 

x 10-7 x l0-h xl0 5 x 1om4 x lo-” 
gYw 4.632513750 1.464929414 4.63’5 137.50 1.464929474 4.632513750 

x lo-” x 1om3 x to--’ x 10-2 x 10-Z 

? tin = 0.3183098861 
? 0.5 
0; = Zh, 0.06830988614 
01 0.261361004 
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FIG. 28. Fanning friction factorf = f(Re). 

f = W~d,J(f/4)RelZ 
k:(ZA/c# 

(A82b) 

with the corresponding value of the Reynolds number given by 

2k:(2A/u)’ 

Re = (&v),ax(/ /4)Re 
(A82c) 

The values of the friction factorf, determined using the three 
coefficients A, a, a, from equation (A82b), as a function of the 
respective Reynolds numbers Re are given in Fig. 28 together 
with the values by Nikuradse according toequation (3.27). The 
pairs of values of the friction factorfand Reynolds number Re 
are given in Table 5. The largest deviations from the Nikuradse 
relation, which do not exceed lx, are found in the values of the 
friction factorfdetermined from equation (A82b) at very low 

and very high values of Reynolds number. Both the depen- 
dences are practically identical at Re - 105. A comparison 
with j"=f(Re), according to various authors, confirms the 
accuracy of the friction factor values in the range of Reynolds 
number Ree(7 x 103, 1.3 x 106), as given above. 

Themodel ofeddy viscosity is in accordance with Prandtl’s 
conception as well as themathematical expression ofReynolds 
shear stress 

du ’ 
5, = pl2 - . 0 dy 

(A83) 

It differs only in that in Prandtl’s conception the transverse 
mixing velocity D is regarded as the product of the mixing 
length [and the velocity gradient du/dy [o = .!(du/dy)]. In the 
model in question the velocity r) is considered constant for the 
given flow regime. 

MODELE DE LA VISCOSITE TURBULENTE 
ET DU COEFFICIENT D’ECHANGE THERMIQUE TURBULENT 

R&sum& La connexion entre la viscositb turbulente et la distribution des frequences de la portie de l’influence 
dune paroi mattrielle dans le courant d’un fluide est derivie. L’expression de l’influence de la paroi est 
gtniralisee, valide aussi bien pour l’icoulement et la transmission de la chaleur dans des canaux lisses et 
rugueux, comme pour l’ecoulement autour dune surface. Le projet d’un modele de la viscositt turbulente 
dune circulation etablie d’un fluide aux proprietes constantes dans un tube lisse est tlabort. Les coefficients 
apparaissant dans le modele sont determin&es et a partir de ces coefficients les caracteristiques 
hydrodynamiques du courant sont dttermin6e.s. Le projet d’un mod&e analogue de l’echange thermique 
turbulent est blabore, la connexion entre les coefficients des deux modeles est determinee et les caracteristiques 
thermocinetiques des fluides avec Pr = 0.72-10 avec q-v = const. sont calculees. Le modtle du coefficient 
d’tchange thermique turbulent est modifie pour les mitaux liquides. L’amalgame des deux modeles permet de 
determiner l’influence de l’bnergie dissipee sur les proprietes thermocinetiques y compris le coefficient de la 
transmission de l’energie dissipee. Le sens physique des coefficients des modeles et leur connexion avec le 

parcours de melange et les quantitb qui caracterisent la diffusion du filet-tourbillon est discutir. 

MODELL DER TURBULENTEN ZAHIGKEIT UND TURBULENTEN 
TEMPERATURFAHIGKEIT 

Zusammenfasung-Abgeleitet ist der Zuzammenhangzwischen der turbulenten i%higkeit und der Verteilung 
der Wahrscheinlichkeitdichte des Einflusses der Wand auf das strijmende Medium. Der Ausdriick des 
Einflusses der Wand ist allgemein giiltig fur die Stromung und den Warmeiibergang in glatten und rauhen 
Kanllen und fur die iiussere Strijmung der Oberfliichen. Entworfen ist ein Model1 der turbulenten Zlhigkeit 
fur entwickelte Strijmung eines Mediums mit konstanten Eigenschaften in glatten Rohre. Die Koeffizienten 
des Modells sind festgestellt und bei ihren Anwendung hydrodynamische Charakteristiken der Stromung 
bestimmt. Ein analogisches Model1 fur die turbulente Temperaturleitfahigkeit ist entworfen, der 
Zusammenhangzwischen den Koeffizienten beider Modelle abgeleitet und fur qw = konst. thermokinetische 
Charakteristiken fur Fhissigkeiten mit Pr = 0.72-10 bestimmt. Das Model1 ist gleichfalls fiir flilssige Metalle 
zubereitet. Die Verbindung beider Modelle erlaubt den Einfluss der Dissipationsenergie auf die 
thermokinetischen Charakteristiken und des Wlrmeiibergangkoeffizienten fiir die Dissipationsenergie zu 
bestimmen. Besprochen ist der physikalische Sinn der Koeffizienten des Modells sowie die Zusammenhange 

mit der Mischungsllnge und mit den Grossen, die die Wirbeldiffusion charakterisieren. 



iOS Jlki SIMONEK 

MOL&.Jlb BMXPEBOZi BII3KOCTM M BMXPEBOfi TEMnEPATYPOLIPOBO~HOCTM 

AHHOTauHn -~ rIpen209etla CTaTwrwecKan mAenb ruixpesoii BW~KOCTW, paccbiaTpmaemia KaK 

pacnpeneneme ~JOTHOCTH BeponTHocTu BJIIIRHHI TBepAOti CTeHKM Ha 06TeKaE‘HUltfi ee rl"ToK 

)KRAKocTH. npeA<TO~eHHble COOTHOllleHMR. y'lHTblBaloLUHe B.QAIlHMe CTCHKH, "0 rIpeflnO:lOjcteHHto 

CnpaBe;umsb~ AnH nepeHoca mfnynbca M Ten.w B r.naAKlix u mepoxoBafbrx Kam.uX M npmTewb~x 

TWeHHii rma norpaHwIHor0 c11011. Ha OCHOBe ?nix CoorHomeHa~ no.nywHa MolieJib Bmpesoir 

BW3KOCTH ,l.TR pa3B,,TOrO TeYeHMII )KIIAKOCTH C IIOCTORHHblMU CBOfiCTBaMll B LJIPAKMX rpy6aX. 

HairAeHbl K03$N$HUHeHTbI MOACIIM II npeACTaBneHbl '4ilCJeHHble pe3yJbTaTbl paWeTa OCHOBHMX 

rMApOAMHaMM',eCKHX XapaKTepACTMK. npe!ACTaBjleHa aH2iAOrW,HaSl 'vfOAe3b BHXpeBOfi TeMIlCpZdTypO- 

~~OBOAHOCTM M noKa3aHa ee cB83b c MoAeAbm sl-lxpeeofi BII~KOCTM. PaccwmHbl TermoBble xapar- 

TepHCTMKH Typ6y.lZHTHOrO Te',eHAfl (Pi- = 0.7 2 10) KHAKOCTM R Tpy6e rrpli OAHOpOAHOM TerI!IOBOM 

noToKe Ha cTeHKe. Monenb slixpeeoii reMnepaTyponpoBoAHocT5~ pacnpocTpaHeHa Ha wysaii ~KRJK~~X 

s4eTamoB. npmomeH5te 06eax MoneneA 1103rso.nseT onpeAe.lwb Bmim~e A5iccmaumi meprm ~a 

rMApoiniHatm~ecKMe R TennoBble xapaKTepwwKI1 TeqeHHs, a TaKxe K03+@iwietrT reniloncpetloca 

06CyNIaeTCS @3MYeCKAii CMblCIl KO3~~MUHeHTOB MOAeJIeii M "OKa3aHa MX CBRSb I‘ A:lUHOfi r,yTH 

CMeUIHBaHMI. 


