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Abstract— Eddy viscosity asa distribution of the probability density of the influence of a solid walldown into a
fluid flow is derived. The expression for the wall influence is generally valid for the flow and heat transfer in
smooth and rough channels and for surfaces in longitudinal flow. A model of the eddy viscosity of developed
flow of a medium with constant propertiesin smooth tubesis presented. The coefficients of the modet are found.,
Computed basichydrodynamiccharacteristics are shown. An analogical model of the eddy diffusivity of heat is
presented and its relation to the model of eddy viscosity is derived. Thermokinetic characteristics of the media
(Pr = 0.72-10) for the uniform heat flux are computed. The model of eddy diffusivity is extended to liquid
metals. Connecting the models together allows the influence of dissipated energy on the thermokinetic
characteristics and the heat transfer coefficient for dissipated energy to be derived. The physical significance
of the coefficients of the models are discussed and their relations to the mixing length and the quantities of
vortex diffusion are indicated.

NOMENCLATURE ¥y, dime{zsion}ess coordinate, y* Pr; o
u,v, velocity in the x and y directions,
coefficient of the eddy viscosity model; respectively;
coefficient of the eddy diffusivity (of heat) u*,  friction velocity, (1,/p)'?;
model; u*,  dimensionless velocity, u/u*.

coefficient related to eddy viscosity;
coefficient related to eddy diffusivity of heat; Greek symbols

relative characteristic (mixing) length, I/r,, ; o, B, coefficients of the eddy viscosity model;
relative radius, r/r,, or 1 -Y; a, B, coefficients of the eddy diffusivity (of heat)
temperature;; model;

relative velocity, u/u,; &, eddy viscosity;

energy rate; & eddy diffusivity of heat;

relative coordinate, y/r,, or 1 —R; v, kinematic viscosity;

Fourier number, at/r; T, shear stress;

Nusselt number, 2hr /4 ; P, density of mass;

Peclet number, Re Pr; o, standard deviation;

Prandtl number, v/a; o2,  dispersion;

turbulent Prandtl number, e/z,; w, angle velocity ;

Reynolds number, 2ur,/v; o, boundary layer thickness (relative);
Zhukowsky number, v¢/rZ ; U dynamic viscosity, vp;

thermal diffusivity, 4/pc,; Q, vorticity;

specific heat at constant pressure ; T, circulation ;

specific heat at constant volume ; ", mean value of Rayleigh distribution;
velocity of circulation; A, heat conductivity;

peripheral velocity; Q, relative temperature, (T — T AT~ T.);
(Fanning) friction factor; AT*, temperature difference for expression of the
heat transfer coefficient; universal temperature profile, ¢,/pc,u*;
mixing length; AT** temperature difference necessary to remove
mean free path of molecules; the dissipated energy, g¥*/h**;
exponent ; @, relative circulation velocity, cp/u..
pressure;

heat flux density ; Other symbols

energy generation per unit volume; v, transverse mixing velocity ;

radius; ¥,  relative transverse mixing velocity, v/u, ;
vortex radius; P(Y), probability;

recovery factor; f(Y), distribution of probability density;

time ; F(Y), distribution function.

mean translation velocity of molecules;

coordinates; Subscripts and superscripts

dimensionless coordinate, u*y/v; a, molecular;
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4, related to heat flux:
0, valid for the center line, initial ;
s, mean, bulk ;
t. turbulent ;
—1,  corresponding to time;
, related to the wall;

w
v, related to the dimension coordinate ;
K, modified

T related to the temperature;

Y, related to the relative coordinate;

w, related to the angle velocity;

a, corresponding to dispersion;
I, concerning circulation;
1, related to shear stress;
g, related to eddy viscosity;
v, viscous :
in, inflexion;
max, maximum;
min, minimum;
’, fluctuating;
R mean in time;
* dimensionless ;
* related to friction;

** related to the dissipated energy ;
related to the adiabatic wall temperature.

1. INTRODUCTION

THE LATEST developments in technology and science
bring about an increased demand for accuracy in
engineering computations. In the field of turbulent fluid
flow and heat transfer there is a need to investigate
thoroughly the local flow and thermokinetic
conditions.

The characteristic quantities of turbulent fluid flow
are most frequently expressed as a superposition of the
mean value in time and the fluctuation component [ 1-
4]. In engineering computations another quantity is
introduced in accordance with this approach,

u't! 7, |

Tdudy  p duwdy

(1.1)

This quantity is analogous to molecular viscosity and is
called the eddy viscosity or eddy diffusivity of
momentum [2, 3]. In thermokinetics a similar
transport quantity is used,

vT dy 1

T TATidy T pe, dT/dy (12
called the eddy diffusivity of heat.

In spite of the fact that the eddy viscosity and eddy
diffusivity of heat occur in many models as the decisive
quantities they have not been worked into a usable
form satisfying both the boundary conditions and the
experimental data of basic turbulent flow and
thermokinetic characteristics till now [6]. The data
necessary to determine the eddy viscosity which are
being published are usually satisfactory only for a
certain limited area of the fluid flow. The data given for
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the eddy diffusivity of heat are usually valid only for
fluids for which the Prandtl numbers are kept within a
very narrow interval.

The present state of basic knowledge ol the
distribution of the eddy viscosity along the radius of a
circular pipe, or possibly along the normal to surface of
a constant cross-section channel, may be summarized
as follows

(1) The course is a smooth function, its first
derivation being continuous {6].

(2) At the center line of the channel, where du/dy
= (), it has a finite value.

{3) On the channel wall it fades out while near the
wall it changes with the cube of the distance from the
wall {10].

(4) In a symmetric channel its course 15 also
symmetric [ 12].

The course of the eddy diffusivity of heat shows
identical properties. Tt differs only in that for high
Prandtl number values (Pr 3 7) it increases near the
wall with the fourth power of the distance [10].

The aim of the present paper is to express the eddy
viscosity and the eddy diffusivity of heat in an analytic
form suitable for application in solving problems of
turbulent flow and heat transfer based on the statistical
character of these quantities, in accordance with the
basic experimental data. The model of the eddy
viscosity and eddy diffusivity of heat presented here is
limited to the stationary, fully developed flow of an
incompressible fluid with constant thermophysical
properties in a smooth pipe.

2. BASIC EQUATIONS OF TURBULENT FLOW IN A PIPE

The turbulent flow of the incompressible fluid is
described by the momentum equation [ 14]

il Cu (S
{v+er— } = _'p< (2.1
~ ( ", f)CX

roer

Ifthe relative velocity U = u/u.is introduced at the bulk
velocity defined by

[
)

2 o
U, =— J ur dr 2.2)
w J0

after the pressure gradient has been expressed using the
Fanning friction factor as

(2.3)

W r\\

with the use of the relative coordinate R = r/r, = 1 — Y
it is possible to rewrite the momentum equation in a
dimensionless form as

1 d|v+e
| -LIZR
R dR [ v

which must be completed by the normalization
condition from the law of mass conservation,

(2.1a)

dU /
2

" i= -1 Re.
dR “

1
J URdR = (2.2a)
0
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For the boundary conditions R = 0=dU/dR = Gand
R = 1= U = Othefirst formal integration of equation
(2.1a) within the limits of {0, R) follows the expression

RdR
foror

R
Rotopn . 4 orap

from which, after another formal integration within
the limits (R, 1), another expression for velocity is

obtained
R
s ) J RdR
U=LRe| 22 — dR
2 eL RO +e)v
f

du
drR =~ 2

(AN
=
N

2.4)

R
———dR. (2.5)
“ Jatop
Ifequation (2.5)is substituted into equation (2.2a), after
a formal integration, the following equation is
obtained :

L' H““ Rl

R(v+e)fv > @9

from which, when the sequence of the integration [3] is
interchanged, after further adaptation follows

1
o (v+e)y

It follows from equation (2.4), when /v = 0 is inserted
for R = 1, that for the velocity gradient at the wall

au 7
(a)w = — ZRe

For the velocity at the general radius it is possible to

write
1
R
j o Ok
R v
U=*g——F5——

o (v+e)y d

@.7)

(2.5a)

The relations for the laminar flow follow directly
from the above mentioned relations for g/v = 0.

By integrating equation (2.1) within the limits <0, r),
after multiplying it by the velocity gradient du/dr, the
following energy equation for the turbulent fluid flow is
obtained [8]:

_(du 2+—,;7du_ r u*zdu
"\ar "W T Fu dr’

This may be rewritten in a dimensionless form as

v2 (du 2+ wv'du v r du
= (=) 2=t
u**\dr w dr  u*?r, dr’

2.8)

The first term,

v2 (du\? R ¥
niale) () e

expresses the direct viscous dissipated energy, while the
second term

T R
T, (v+e)/v

€ R 2 ¢
=v<(v+s)/v> =y 28

expresses the turbulent energy production rate. The
sum of these two terms gives the total energy rate,

u't’ du
V——=
u** dr

W, =

v r du R?
L U 28
Ve e oy 2%

From equation (2.8d),

e W

ST W 29
The relative eddy viscosity &/v then corresponds to the
ratio of the local densities of turbulent energy
production W, and direct viscous dissipated energy W,.
The mean relative eddy viscosity may be understood as
the mean value of the density ratio of turbulent energy
production and the direct viscous dissipated energy
along the pipe radius

1 1
W,
<E>=ficm:j LR,
V/s oV o W,

As in the differential equation (2.1a) for turbulent
flow, which is the starting point here, the product f/ Re
appears. Itis not possible to obtain from its solution an
independent expression for f (or even for Re), but an
expression in which both the quantities appear (f/4) Re,
can be obtained.

With regard to equations (2.8¢) and (2.6a), it is
possible to explain the meaning of this complex using
the relative energy density integral along the pipe cross-
section

1
J_”Re_%_%
f WR dR

(2.10)

lﬁpr

2 dx uu,

Twlw

TW rW
M (2.6a)
AT R

and the expression for the velocity, according to the
equation (2.8c), using the relative direct viscous
dissipated energy density

U——R J W2 dR = f —_dR. (2.5b)
3. EDDY VISCOSITY MODEL

Let us take arandom variable, &, which acquires the
value of the relative reach of the solid wallinfluence into
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the Huid low. This variable has, in a general sense, a
certain distribution function

F(Y}y= P(¥ < Y) (3.1)

giving the probability that the influence will reach as far
as the distance Y. With this distribution function, a
certain probability density function f(Y) is associated
by [33, 34]

dF(Y) = f(Y)dY = P(Y < ¥ < Y+dY), (3.2)

stating the probability that the reach distance will
acquire the value Y in the elementary interval {(Y,Y
+dY). The probability that the influence will extend
pastthedistance Y, or that theinfluence will continue to
the distance Y, is expressed by

P(Y > Y)=1—=F(Y). (3.3)

The conditional probability ¢(Y) that the influence will
be damped in an elementary section dY, if it reaches as
far as the distance Y, may be expressed by the ratio of
the probabilities P(Y <. < Y+dY) and P(¥ > Y)
[33, 34]

P(Y)=P(Y <4 < Y+dY/¥ > Y)

P(Y < ¥ < Y+dY)
=il 2D 2 TR (3.4
P(¥ > Y)
Byinsertingequations(3.2) and (3.3)into equation (3.4),
and after further adaptation, a differential equation can
be obtained

FLY) = @(Y)[1 - F(Y)]. (3.5)

Bysolving thisequation within the interval €0, Y ), with
the boundary condition Y = 0= F(Y) = 0, a general
form for the distribution function is obtained

;
F(Y) = 1~€Xp( —f (P(Y)dYJ. (3.6)

)
Let us base our further considerations on the fact that
the probability of the influence of the wall vanishing in
the elementary section dY, when the distance Y has
been reached, is directly proportional to thisdistance Y.
By placing

2
o(Y)= Y. u>00 Y20, (3.7)

the exponential terminequation (3.6) will have the form

Y ) y?
f (/J(Y)dY:JY -YdY =—,
A

0 0 %

(3.8)

from which an expression for the distribution of
probability density of the wall influence follows

(S No]

flYy="Ye ¥ {3.9)
which is, in mathematical statistics, called the Rayleigh
distribution [34]. The corresponding distribution

function has the form

F(Y)=1—e Y= (3.10)

The mean value of the Rayleigh distribution (the first
general moment) is given by [11, 34]

3

n = Yma)' 2 (211

The dispersion (the second central moment)is given by
[11,34]

Y20, x>0 (343

b >0,

the so-called Weibull distribution can be obtained for
the probability density [33]

}
,/‘(Y):/.»« yfole 1 (3.14)
o
with the distribution function
F(Y)y=1-¢ = {315

where o is a parameter of the wall influence (the width of
the distribution)and f is a parameter of the distribution
form (for a Rayleigh distribution f# =2). For the
Weibull distribution there is a corresponding mean
value expressed by the T" function [11, 34]
ad
H= a“"r( 1+ [{) (3.16)
and a corresponding dispersion, expressed also by the |
function [ 11, 34]

o’ = x”[F(l + 2)4‘2(1 + 2)] {3.07
p . B

The idea of the statistical distribution of the reach of
the solid wall influence into the fluid flow, expressed by
a Rayleigh or Weibull distribution, may be extended to
rough surfaces. In this case it is necessary to use, instead
of the two-parameter distribution, a distribution
defined by three parameters, where the third parameter
Y,, signifies the minimum reach of the wall influence for
all cases (the distribution parameter in relation to the
origin). This reflects the shift of the flow from the wall
and is directly related to the value of the relative wall
roughness

RLbI

Sy =Y =Yye 0 T (3.18a)

i .
vy =Livgpre v
o

(3.18b})

As equations (3.9) and (3.10) or (3.14) and (3.15) and
(3.18a,b), which express the probability of the wall
influence reach into the fluid flow, were derived in a
quite general manner, their validity is also general. The
distance from the wall where P — 1 is the limit of the
turbulent boundary layer (in a general sense ol both the
hydrodynamic and thermal) or the boundary layer
relevant to the mass diffusion. The individual
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coefficients (x, f, Y,) which occur in the above-
mentioned equations are dependent on the particular
geometric and hydrodynamic or thermal boundary
conditions or on the conditions of mass diffusion.

If the relative distance Y = y/r, from the wall is
replaced by the absolute distance y (m), or if it is related
to a characteristic length other than the cross-
dimension of the channel, the expressions are also valid
for the case when the medium flows along the surfaces.
In a channel, the value P — 1 corresponds to the reach
of one wall influence towards the opposite wall. In case
of not fully developed convection, or in the entrance
region, the probability acquires the value P —1 at a
shorter distance from the wall (Y < 2).

The character of the eddy viscosity in a smooth pipe,
specified in the Introduction under theitems (1) and (3),
satisfies the linear combination of the probability
densities of the range of wall influence for the relevant
solutions of the differential equation (3.5), namely the
difference of the two partial stochastic processes with
the Rayleigh distribution of probability density.

Fortherelative eddy viscosity the following equation
may be written:

=~ AN ALY, (3.19)

where

—-Y%a,

2 2
f(Y):_Ye ’ fw(Y)zg._Ye_Y/ﬂw’ (x>aw.
o

With regard to the symmetry of the problem [items (2)
and (4)] it is necessary in the mathematical description
of the model of eddy viscosity in a pipe to take into
account the opposite symmetric branch with the
coordinate (2—Y). As at the point Y =2 (on the
opposite wall) the Rayleigh distribution is not exactly
zero, corrective terms may be introduced which
represent negative mirror-like (symmetric) functions
outside the interval Ye<0,2>, and the terms smaller
than (2/a)4 e~ *** or (2/a, )4 ¢ ~**/* may be neglected.

For the relative eddy viscosity the following
expression may then be written:

e 24

IYe P4 2-Y)e @R _(24Y)
o
% e—(2+Y)2/zz_(4_ Y)e—(4-}')2/a]

24 2 2
——2[Ye MWy (2-Y)e w2+ Y)

w
x g~ 2+ aw __ (4—Y)e —(4- Y)’/«zw]

24 24
="—G(Y)— —=G,(Y).
o o

w

(3.20)

The analytic function expressed by the difference of
two Rayleigh distributions is, at a very small distance
from the wall, proportional to the third power of the
distance from the wall

€
—=KY3
v

(3.21)
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From the development of the basic terms of equation
(3.20) (which contain only Y) into power series, a
relation between the coefficients 4, a, 4,, «,, in that
expression and the coefficient K in the equation (3.21)
can be obtained

24-4,)
T oam,

K (3.22)

From the condition of zero derivative on the wall
(Y = 0) which results from the necessity of coincidence
between the functions according to the equations (3.21)
and (3.20), the following relationship between the
coefficients in equation (3.20) will be obtained:

A4 _A,
o,

(3.23)
This allows the expression for the relative eddy
viscosity to be simplified to
24 2 5
b [ y(e T g Pl
v o

+(2-Y)e @-Ya__g—(2- Y)Z/aw)
—(24+Y)e Q2472 a_o—(2+ Y)Z/uw)

—_ (4 — Y)(C —(4-12ja__ e 8- Y)2/zw):|

= g;H(Y). (3.20a)
Equation (3.20a) satisfies all the characteristic features
of eddy viscosity specified in the Introduction to this
paper. The function according to equation (3.20a) has
its maximum point, as well as two inflexion points, in
the interval Y e (0, 1. The minimum point is situated
at the center line Y = 1 and on the wall.

As the Rayleigh distribution is a normalized function
for which the following relation is valid:

fwf(Y)dY=Jm2
0 o &

and as at the point Y = 2 (on the wall) it differs only
slightly from zero, it may be considered, with no loss of
accuracy, that

Ye PrdY=1 (324

J f(ndy =1, (3.24a)

0
and with regard to the symmetry of the functions in
equation (3.20) that

1 1 2
J f(Y)dY+J f2-Y)dY = f f(Y)dY = 1.(3.24b)
0 0 0

An analogous consideration is also possible for the
function f(Y). The coefficients 4 and A, then
correspond to mean functional values and their
difference

(3.25)

corresponds directly to the mean value of the relative
eddy viscosity along the pipe radius. For the coefficient
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K inequation (3.22)itis possible to write, with regard to
the equations (3.23) and (3.25),

24, 24, o, 2471 1
K="""= ( - ) - < - > (3.22a)
AAy A\, % o2\, o
In equation (3.20) there are four coefficients, namely A,
%, %, and A, ; for the application of the model it is
necessary to know their values.

Equation (3.23) enables the number of unknown
coefficients to be limited to three in equation (3.20a).
Thus we need to know either three experimental data
points or three physical conditions. For the individual
flow regimes, defined by the Reynolds number Re, we
may consider the available literature values of the
Fanning friction factor /" and the velocity U, at the
center line, which may also be simply determined
experimentally. As the third necessary datum the value
of the arbitrary radial velocity may be used. In the first
place we may take into account the radius on which the
local velocity is equal to the bulk velocity, ie. U = |
(given in ref. [97).

As the third condition, besides the experimental data
for for (f/4)Re and the velocity U, the energy bond
between the stochastic processes expressed by the
probability distribution f(Y)andf,(Y)(i.e. the principle
ol maximum energy degradation) may be used to find
the values of the coefficients in equation (3.20a). The
condition of maximum energy degradation is satisfied
for the flow regime in question for the minimum mean
value of the ratio of production of turbulent energy
density to direct viscous dissipated energy along the
pipe radius which equals, according to equation (2.10),
the mean value of the relative eddy viscosity and,
according toequation (3.25), also equals the value of the
coefficient A,

2 YW le
A=) =| ZdrR= { “ 4R ~ min. (3.26)
Y/ o W, Jo Vv

The system of equations (2.5) and (2.6a) for given
couples of values of Uy and ( f/4) Re, corresponding to
the chosen values of Reynolds number Re in the region
of developed flow (Ree {10* 10°%), has been solved
numerically and the coefficients A, %, «, have been
found for which A, is a minimum. The values of the
friction factor have been determined on the basis of the
Nikuradse equation [3]

i
jiz =40 log(Re f12)—0.40.

The values of velocity U, at the center line have been
determined for the respective values of Re from

(3.27)

!
U pys ~ 01078 log(Re Ug)+09547
(o=

(3.28)

These values have been combined over the interval
Ree{10%,10%> with the experimental values found by
Nikuradse [3]. The computed coefficients 4, «, «,, are
given in Table 1, together with other characteristic
quantities, namely A, ¥ Yimae Wimao 4w K. The

coordinate of the inflexion point Y, (situated nearer to
the wall) of the eddy viscosity has been found by solving

d*(e/v) d?H(Y)
S CAC S e Y
dy? dy?

Theapproximate coordinates of the inflexion points for
o > o, may be determined from

Yin 1 = (%O{w)l;‘l
and
Yin 2= (%(x)l"z'

The coordinate of the turbulent energy density
production maximum Y, ., has been determined from
the conditiondW,/dY = 0and W, ,,,, from the equation
(2.8d)for Y = Y, 0

For the application, the following substitute
relationships have been combined with the values of the
coefficients for discrete values of the Reynolds number

A = 0.0029396(Re + 2000)°-34!, (3.29)

o = 0.37252(Re—9460)~ 0-01302, {3.30)

%, = 40198.7(Re— 1630) 17275, (330

The coefficient 4 varies approximately linearly with
Re. On the other hand the coefficient « is practically
constant, while the cogfficient o, decreases rapidly with
increasing Re.

In Table [, some basic dimensionless parameters
characteristic for turbulent flow are given, namely the
dimensionless coefficient K* " expressing the pro-
portionality of eddy viscosity near the wall to the third
power of the dimensionless distance from the wall y .

= *—J\& (3.32)
[(f/2)'*(Re/2)}? ‘

£ o

=Ky, (3.33)
v
"\ 172 Re S N2y, )
yi= <;1>_> EL ;Y= (EV) Y (3.34)
P v
the dimensionless mean eddy viscosity,

D= A A (3.35)

D= A s b

ST T /) PR
the dimensionless distance of the inflex point of eddy
viscosity from the wall,

N1/2 R
v_:\ = <f> ne Yy
. 2 2

and the dimensionless distance of the turbulent energy
density production maximum

112 Re
yrmax = Vf; —_{ Y
2 2

t max®

(3.34a)

(3.34b)

The coefficients K™ =6 x 10™* and &~ = 0.06 are
approximately constantin the range of Re values which
has been observed. The dimensionless distances v, .,
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2and y;, = 29 are the same for all the values of Re
Wh]Ch have been considered. The value y,",,, = 12isin
agreement with Laufer’s experimental values [8]
including the value W, . which differs only slightly
from 0.25 for all Re values. The value y,, = 29
corresponds to the boundary between the turbulent
core and the buffer layer and is usually regarded to
be in the range y* = 27 30 [3, 14], the universal
dimensionless profile being expressed as u™ = f(v*)
The coordinate Y, ., of the turbulent energy density
production maximum is practically identical with the
coordinate Y, ... where the eddy viscosity ¢ equals the
molecular viscosity v, ie. ¢/v = 1, or where the local
density of the turbulent production energy W, equals
the local density of the direct viscous dissipated energy
W,. The coordinate Y,., which follows from the
solutionofequation(3.20)forg/v = land y,.  aregiven
in Table 1. The coordinates Y, .., and Y,_, differ only
slightly from the values of Yy, given by the Blasius
relation [4]
Y 23 3.36
BL = Re"‘ (3.30)
for the thickness of the viscous layer; the coordinates
Yy and yg; are also given in Table 1.

When determining the values of the coefficients A4, »
and 2, using the experimental values of fand U, further
conditions, such as the assumed minimum of the ratio
of production of turbulent energy and direct viscous
dissipated energy along the cross-section, were taken
into account as well as the hypothesis of the mean eddy
viscosity minimum. The computed velocity profiles
determined for conditions other than the required
mean eddy viscosity minimum along the piperadius are
not in agreement with the experimentally found
profiles. It 1s therefore possible to regard the initial
hypothesis as correct and to assume that momentum
transport is not a cross-section function but a path
function.

The procedure for determining the coefficients A,
and «, may be modified, for example using the fact that
¥in = const. instead of the experimental values of the
velocity U,,.

The fact that the dimensionless coordinates y;, and
¥ ar€ practically independent of the flow regime (i.e.
of Reynolds number Re)leads to a consideration of the
inner connections of the turbulent fluid flow in these
quantities. From the hydrodynamic equations only
such dependencies follow that allow the interpretation
of the physical meaning of these variables. No
relationship gives a quantitative expression of any
linkage. Thisis also why the statistical characteristics of
the eddy viscosity course (so called ‘quantiles’) have
been analyzed and a connection between the
coordinate of energy production turbulent maximum
and the values of the coefficients 4 and A, or a and a,,
have been found. It has been found that the coordinate
Y, ... and the coordinates of the point where the sum of
the integral effect of both the components of the eddy
viscosity is equal to one half of the total effect of the

component near the wall coincide, i.c.

Yim
o

After simplifying this equation by leaving out of the
unessential terms near the wall which contain the
coordinates (2—Y), (2+Y), (4—Y), replacing 44
= a,/a, and after integration we obtain

~

ax I A Yimax 2A. A
G(Y)dY+J G AYV)AY =
% ( v

) o

{337

o2 . Ay
a1 —e Vimam) o (1 —¢ Yimoinn) = S (337a)

The deviations between Y, ., determined on the basis
of equations (2.8d) and (3.37a) amount, in the observed
interval Ree (10%,10%), to 0.14%, for small Reynolds
numbers and to 0.000002°%; for large Re.

The finding that the coefficient o varies only very little
with Re and that the mean value of reach of the wail
influence (., = 0.341655 = n,.. = 0.5180, «,,,
= 0.313297 = ., = 0.4998), determined on the basis
of this coefficient {rom the equation (3.11), varies even
less, leads to the consideration that the mean value of
the wall influence reach into the turbulent core equals
practically one half of the pipe radius, i.c. 7 = 0.5, with
which is associated, according to equation (3.11), the
coefficient o = [/x, which is constant throughout the
region of the developed flow. This value of the
coefficient o is associated with the probability of
the reach of the wall influence towards the opposite wall
(Y = 12),

P(2)=1-¢e*" =

The finding of the connection between the
coefficients A and A,, or o and 2, and the coordinate
Y ma Of the turbulent energy production maximum,
expressed in equation (3.37a), together with the
simplification o = 1/n = const. for all the regimes,
enables the methodology of adjoining the coefficients 4,
A, and a, to therespective flow regimes to be simplified
to a procedure which does not require the extreme of
the coefficient A4, to be found. For the chosen value of
the coefficient x«,, if = l/z is considered, the
coordinate Y, ., will be found from equation (3.37a).
When the derivative of equation (2.8d) is put equal to
zero, and the coordinate Y = Y, determined from
equation(3.37a)is inserted, the following expression for
the coefficient A, or 24/0 = 24, /2, will be obtained:

1-3.487 x 10 °© = 999996513,

dH(Y

- -Lr)ru —Y)—2H(Y)
24 dy X
- (338
»  dH(Y)

ar H(Y)(1 Y)+7[H(Y)]

For these three coefficients the corresponding flow
regime will be determined by way of a numerical
computation from equation (2.6a), [the complex
(f/4) Re] ; the other quantities will be determined from
their respective equations, €.8. Yip, W, qux» Ai A s O
K, the values of which, for o, = 0.01, 0001 0.0001.

0.00001, 0.000001, are given in Table 2. From equation
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Table 2. Characteristics of turbulent flow in the pipe determined on the basis of the eddy viscosity model

«, 10-¢ 1075 1074 103 1072
Y, ax 0.00051595685 0.0016316927 0.0051599626 0.016319054 0.051660464
W, max 0.24974205 0.24918446 0.24742313 0.24187166 0.22448007
A 1317.8547 416.01126 130.91019 40.833476 12.583644
A, 1317.8505 415.99819 130.86907 40.705194 12.188317
A, 0.004140163 0.01306979 0.041126649 0.128282148 0.395326836
Y. 0.0012247362 0.0038727110 0.012238858 0.038464175 0.11547985
o — — 0.3183098861 — -

n — — 0.5 — —

K 8.28029 x 10° 2.61379 x 10® 8.22274 x 10° 2.55758 x 10° 7.65814 x 103
U, 1.1536731 1.1740900 1.2010321 1.2407182 1.3100513
(f/4)Re 828.88808 296.48076 107.66181 40.019964 15.537811

f 0.0028363605 0.0035443052 0.0045531461 0.0060528858 0.0083737127
Re 1168946.0 334588.29 94582.349 26446.865 7422.1140

AY 0.059873672 0.059069072 0.057998414 0.055955061 0.050757473
Vemox 11.356475 11.491314 11.643068 11.871496 12.40515

it 26.957073 27273846 27.616065 27.981235 27.730006
K*+ 0.000776525 0.000748302 0.000715738 0.000664352 0.000553085
Riax 0.99870916 0.99736798 0.99390987 0.98502623 0.96228725
(@8 max 1.0003 1.0009 1.0025 1.0068 1.0178

R, 0.99584818 0.99180365 0.98278685 0.96177780 0.911674050
(2.5), in the integration interval <0, 1), the velocity at ooo0 [ 7 © ' T

the center line U, was fixed. |

From the complex (f/4)Re, with the use of |
Nikuradse relation (3.27) for the Fanning friction "
factor, both the friction factor f corresponding to the oty =10
chosen valuea,, and the Reynolds number Rehave been 1500 |
determined. The values are given in Table 2. T

From the discrete values of the dependence between i

. . + L

o, and Re, the equivalent analytic dependence has been gy_e

found, i i i
109255.5 J

Ay = 5 1.8175° (339) 1000

Re* L

which after certain adaptation gives i
| _
591.76 L wom 105
Re = ossor (3.39a) so0 | w |

With the aid of the friction velocity (t./p)'/? I i
= (f/2)"?u,, the dimensionless coordinates of the I i 1
inflexion point of eddy viscosity y;" have been expressed ¥ 1
as well as the dimensionless coordinates of the =107
turbulent energy density maximum y," ., which are O o %5 10

given, together with the dimensionless coefficient K+ *
in Table 2.

In Fig. | the total relative viscosity (v +¢)/v along the
pipe radius is represented, computed on the basis of the
model for several values of «,,. £ * near the wall, showing
the proportionality of the eddy viscosity to the third
power of the distance from the wall Y, is plotted in Fig.
2. The course of the velocity U near the wall, where it is
practically linear, is represented in Fig. 3; the velocity
profiles expressed in dimensionless form u* = f(y™)
are given for the basic values of a,, in Fig. 4.

A comparison of the complex {f/4) Re dependence
on the coefficient «,, according to the model of eddy
viscosity (full line) and the values obtained from
Nikuradse data for the center line velocity and the

—_—Y —

Fi1G. 1. Total relative viscosity (v+¢)/v = f(Y, a,).

friction factor (dotted line), is shown in Fig, 5. For large
values of a,, the values of (f/4) Re are given, obtained
from the data [16] (open circles). In Fig. 6 there is a
comparison of the computed values of the center line
velocity U, and of the experimental data for the
identical a,,.

In thermokinetic calculations for g, = const., the
ratio oflocal heat flux density to heat flux density on the
pipe wall, 4/q,,, occurs. This depends on the hydraulic
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Fic. 2. Dimensionless eddy viscosity near the wall ¥
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FiG. 3. Velocity profiles near the wall.

0

FiG. 4. Dimensionless velocity profiles u*™ = f(y ™, a,).

parameters of the flow only, as is clearly shown by the
relation

q 2 J R i
~+=-1 URdR. (3.40)
4« R Jo

For the basic values of o, the ratio g/q,, s represented in
Fig. 7, as its dependence on the coordinate Y = 1 —R;
Figure 8 shows the same dependence in semi-
logarithmic coordinates. The radius R,,,,,, at which ¢/q.,
reaches the maximum, and which is determined from
the condition d(g/q,,)/dR = 0 leading to

Rinax
UR2,, = J UR dR. (341

0

is given in Table 2 together with the values of (¢/¢)max
and the values of the radius R,, where g/q,, = 1. Figure
7 also shows the relative Reynolds turbulent shear
stress 1,/1,, along the pipe radius. Figure 9 shows the
same dependence in semilogarithmic coordinates for
the basic values of the coefficients «,,.

The Reynolds turbulent shear stress expressed by the
ratio 7,/7,, has been determined from

o v B
LI A - Y I
T, u*? < (V+8)/V,>

The coordinate Y, ., of the Reynolds turbulent shear
stress maximum is determined by the condition of the
extreme d(t,/7,,)/dY =0

N\ 2

24 24 24\ 7
1+ 2 HM =N =B - ) (H =0
2 2 A

/

{3.43)

The course of the turbulent energy production rate W,
and the direct viscous dissipated energy rate W,, as
functions of y*, are shown in Fig. 10, together with the
values of these quantities obtained in an experiment by
Laufer [8]for Re Uy, = 5 x 10*and 5 x 10°.

Figure 11 shows the dependence of the coefficient K
on the Reynolds number Re compared with data
obtained by other authors.

4. THE BASIC EQUATIONS OF THE
TURBULENT HEAT TRANSFER

Convective heat transport in turbulent flow is
described by the differential equation [14]

~ A
3

[ ¢ T or
N Gt peer— | = peur. 4.1
[(/ +pe,e)r 6‘r:| Pl 5 (4.1)

ror

Let us limit the problem to the solution of the case of the
constant heat flux density on the wall q,, = const.
qw = WT,—T,) = const. (4.2)

If the relative temperature ® = (T, —TY(T,—T) is
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F1G. 5. Complex (f/4)Re = f(a,).

applied where

2 (™
I,-T,=—5 J u(T,—T)r dr 4.3)
sfw JO
for
oT 0T, 0T, (
_ = =——— = CO .
ax ox  ox oom
T T T L S B R B o B L O R LA
1,30 L —— MODEL

« NIKURADSE [3] e
o ROTHFUS [}

F1G. 6. Relative center line velocity U, = f(a,).

rj a.,-40-6

10

Fi1G. 7. Relative turbulent shear stress t,/t,, and the relative
heat flux density ¢/q,, in the pipe.

the initial equation may be transformed into a
dimensionless form

1 d [a-}»sq de 4.12)

RdR| a Rai]= ~NuU
and the defining equation of the medium bulk

temperature (4.3) may be changed into the form

1
1
f OUR AR = 5 (4.3a)

0

For the boundary conditions R = 0= d®/dR = 0;
R =1=0 =0, after a double formal integration of
equation (4.1a), the following expression for tempera-
ture will be obtained
R
J UR dR

© = Nu J [R@+sya) &

After inserting the obtained expression into the
normalizing condition (4.3a) corresponding to the
dimensionless equation of energy conservation, the
following relation for the Nusselt number will be

44

102 - SN
Ll e Lo (I

! 1 i NI
o el i TTTH

T Do “‘F‘T‘}
b : i
| e
A

Y AN A

e\
- 10 0"

Fi1G. 8. Relative heat flux density g/g,, near the wall.
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e Y e
F1G. 9. Relative turbulent shear stress t,/1,, near the wall.
obtained: Lol T 7
1
N U o= iA«--w- -MT-w ~——R-vv B ] / b
Zf UR ( {J. UR dR/[R(aJraq)/a]}dR
0 Jr {Jo 0% b / &
4.5) ‘ i
which, when the sequence of integration is inter- MIZUSHINA . /
changed, may be rewritten into the equivalent form Vi
§ 0 / 5
1 i :
Nu = R T e )
2-( {(J UR dR) /{R(a%»a&/a]}dR g
O O E i
(4.52) s 1
known in the literature as the Lyon relation [9]. . »5
Further, it follows from the boundary conditions for w1778 (B Uy
: ; . . VIETH, PORTER,
the relative temperature gradient on the wall that o SHERWOOD
de _ Nu 46)
dr ),  2° e
The relations valid for laminar flow follow directly from 0° .
the above stated relations for turbulent flow when 1
&,/a = 0 is inserted. By integration of the differential !
equation for the turbulent heat transport (4.1} in the
limit of (0, 7>, and after multiplying by the temperature o et o
0~ o

gradient,an equation analogical to the energy equation

440 ¥ T T T T T ¥

]

09 r o fa.Ug=510" |
. B Uy=510°
— MODEL

LAUFER {8}

SSUVVIN FUOTRIVRNS EEUOSURY U

|
|
i

—

FiG. 10. Course of the production turbulent energy rate W, and
the direct viscous dissipated energy rate W, near the wall.

g e

FiG. 11. Coefficient K in equation {3.22).

(2.8a) for the turbulent momentum transport will be
obtained which, when expressed dimensionlessly, has
the form

/PR 2 PR N2
4(.{ UR dR) 4(‘{ UR dR)
0 A £y 0 ]

RP[(a+e)al

o Rillatayal
;PR

A,

When q/q, from equation (3.40) is inserted an
equivalent expression is obtained

UR dR)L
,,,,,,,,,,,,,,,,, 4.7

@/qs)? & l9/q.)’ 4w (4.72)
————— ﬁz‘ — '““""'W—_“;‘z —_ “,""v""" i N - , T 0
Ha+e)/al®  a [a+elal®  Uatelial

Wyt W, = W, {4.7h)
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The first term on the LHS, W,,, has a meaning
analogical for heat transport with the direct viscous
dissipated energy rate in momentum transport, i.. the
relative density of molecularly transported energy ; the
second term W, corresponds to the relative density of
turbulently transported energy. The total W, expresses
the relative density of transported thermal energy; it
follows from a comparison of equations (4.7a) and
(4.7b) that
Wa

&y
b M 48
W (4.8)

qa

The mean value of (¢,/a), along the pipe radius equals
the ratio of the integral values of turbulent and
molecular energy densities,

f) _ [ Yagr_ [ fgr
ajs OVan Oa .

The mean value of eddy diffusivity of heat and the mean
value of eddy viscosity also enable the mean value of the
turbulent Prandtl number along the pipe radius to be
determined,

4.9)

6 _ G,

$
s (gj/a)s
The contribution of turbulent heat transport, namely
the relative turbulent heat flux density is given by

Pr.= (4.10)

4 _ _ v'T pe,
g, UFAT* qw

a, vT

—ﬂ—[l— 1 ]_q g,la
T gl ate)al  qulate)a

By inserting g/q,, from equation (3.40) and W, from
equation (4.7b) into equations (4.5a) and (4.4) for
Nusselt number Nu and for the relative temperature O,
the following expression explaining the meaning of
these quantities is obtained :

(4.11)

quantity is the total energy rate W ; for heat transport
the decisive quantity is the total absorbed energy
density distribution W,

5. MODEL OF THE EDDY DIFFUSIVITY OF HEAT

As in the case of the eddy viscosity model, our
considerations will be based on the idea of the origin of
the eddy diffusivity of heat resulting from two
stochastic processes (acting reversely) governed by the
Rayleigh probability density distribution

2 2
f(Y) = Ye Y,
o,

q

(5.1a)

— Ye Vv,

qw

(5.1b)

By superposition (difference) of these processes the
condition of the proportionality of the eddy diffusivity
of heat to the third power of the distance from the wall
(in close proximity to the wall), which is valid for fluids
with low Prandtl numbers, may be satisfied

€
;" ~ A SN = A Y. (5.2
The proportionality to the fourth power of the distance,
found for fluids with high Prandtl numbers, satisfies the

superposition of the processes with a more general
Weibull distribution of the probability density

1Y) _k Y8 le~Yia

2 (S.1¢)

R
[

qw

(5.1d)

for the value of the coefficient § = 3.

Let us limit our considerations to fluids with low
Prandt] numbers and take for the starting point the
Rayleigh probability density distribution. It is then
possible to write for the eddy diffusivity of heat an
equation formally identical with equation (3.20) for
eddy viscosity which differs only in the values of the
respective coefficients

— TV [Ye Y 4 (2—Y)e @ VMraw (24 Y)e TCH Ve (4 Y)e~ G D] (53)

Nu 1
=T (4.5b)
J- W,R dR
[
fﬂ — %ﬁ [Ye—YZ/aq+(2_ Y)e—(z—y)z/aq_(2+ Y)e~(2+}’)2/aq_(4__ Y)e‘(d,—Y)l/aq]
a Xy
24
aqw

Nu (1 Nu (' W
@=—4| wuzdgr="4 *_dR. (44a
2 J ‘ R PR S

From the above stated facts in comparison with the
relations for (f/4)Re and U, an analogy follows
showing that the quantity equivalent to shear stress
7/1,,in the case of momentum transport corresponds to
the relative density of the transverse heat flux g/q,, in
heat transfer. For the hydraulic resistances the decisive

If the eddy diffusivity of heat near the wall is expressed
by

€
1= K,Y?

P (5.4)

the coefficient K, is linked with the coefficients 4,, 4,
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o, %g DY the equation

K,= Ay~ Ag) 240 _ 24, (1 - Ofi"l)’ (5.5)
2,

2, 2, Xgllgw

qgw q7aw qa

the ratio of the coefficients being given by

A, Ay

S (5.6)

a‘l OC‘IW

which follows from the condition [d(e,/a)/dY],, = 0.
The coefficient A, is the mean value of the relative eddy
diffusivity of heat along the pipe radius

Ay = A~ Ay, = Aq(l - %)
q

1
=<E) :,[ bagy. (5.1)
al, Joa

It is possible to use for the determination of the extreme
and inflexion points or other quantities affecting the
eddy diffusivity of heat the expressions given for eddy
viscosity in Section 3.

When determining the coefficients from equation
(5.3) for the eddy diffusivity of heat it is assumed that, as
in the case of eddy viscosity, the distribution of
probability density of the basic process influence is
determined, for fully developed convection, by the pipe
dimensions. Therefore,

(5.8)

R
i

*
il
\

Classical fluids

In accordance with Corrsin’s finding of proportion-
ality between the ratio of temperature and velocity
microscales and the value Pr!/2 which was derived for
isotropic turbulence [12], let

A, = APr'2. (59

For «, = «, it then follows from equation (5.6} that

Dy ax

Ap P74, (.19

As the thickness of the thermal sublayer in the region
near the wall decreases with increasing Prandtl number
[5, 14], it follows from equations (5.10) and (3.23) that

X

Ay = PT%? {(5.11)
Agpw = Ay (5.12)

For stochastic processes there are dispersions [11]

4—m 2
——, = 0y,

4

2
Oyg =

(5.13a)

4—m a, o1,

4—n

2
OYaqw = ~ 4 Lgw =

Liquid metals
The model of the eddy diffusivity of heat in clas-
sical fluids above may be extended to and modified

for liquid metals which have low Prandtl numbers
Pre0.003,0.1> [5].

To determine the velocity profiles of liquid metals
which are included in the category of Newtonian fluids
the model of eddy viscosity may be applied without any
changes.

The Prandtl number occurs in both the free and
forced convection of liquid metals raised to twice the
power in comparison with the classical fluids 5,23, 247
This fact allows a simple modification of the eddy
diffusivity model to be made. In the relation for the eddy
diffusivity of heat of liquid metals in the region of fully
developed convection coefficients occur which are
linked with the values of the coefficients in equation
(3.20) for the eddy viscosity by

A, = APr, (5.14)
and
x‘v\/ -~
As for classical fluids we will put
R )
o, = \: <) (5.8}

For the stochastic processes in liquid metals there are
the respective dispersions

Oty = O3 (5.16a)
O;:‘V-' ~
Obgw = B (5.16b)

For a few hydraulic regimes defined by the value x,,
the values Nu and ®, have been computed for fluids
with Pr = 0.72,3 and 10. A comparison of the obtained
dependencies of Nu on Reynolds number with those
according to the relation [25]

Nu = 0.023 Re®® pr" (5.17)
for n = 0.33 and n = 0.4 is given in Fig. 12.

The values of the relative center line temperatures
@, for fluids identical in dependence on Re are given in
Fig. 13. The linear temperature profiles near the wall,
computed on the basis of the model, are shown in
Fig. 14. For Re = 94 582 (x,, = 0.0001) the computed
dimensionless temperature profiles T = f{(y* *) are
given in Fig. 15.

In Fig. 16 the dimensionless temperature profiles for
Pr =072 are shown. The obtained temperature
profiles show complete agreement with the data found
in the literature [ 14, 3]. Plots of (a + ¢ )/a for Pr = 0.72,
3 and 10 are shown in Fig. 17.

The dimensionless eddy diffusivity of heat,

N &g &y I
W T Rep O
shown in Fig. 18 to depend on log Y, confirms the
proportionality of the eddy diffusivity of heat to the
third power of the distance from the wall [equation

(5.3)].
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Fi1G. 12. Nusselt number Nu = f(Re, Pr).

The turbulent contribution to the transverse heat
flux along the pipe radius expressed by the ratio ¢,/q,,
according to the equation (4.11) is shown for several
regimes with Pr = 0.72in Fig. 19. In Fig. 20 the relative
densities of molecularly- W,, and turbulently-absorbed
energy W, are shown as functions of the dimension-
less coordinate y* for fluids with Prandtl number
Pr = 0.72, for regimes corresponding to a, € {0.001;
0.000001>. The course of the local turbulent Prandtl
number Pr, = ¢/¢, along the pipe radius is given for the
regime corresponding to a, = 107* for fluids with
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F1G. 13. Relative center line temperature @, = f(Re, Pr).
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FiG. 15. Dimensionless temperature profiles T+ = f(y* *, Pr),
Re =94 582.
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FiG. 18. Dimensionless eddy diffusivity of heat near the wall

Pr= 072

g, = f(Y,a,), Pr =072,
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FiG. 20. Relative energy absorbed molecularly W,, and

turbulently W, near the wall.

Prandtinumber Pr = 0.72,3and 10in Fig. 21. In Fig. 22
Pr values for fluids with Pr = 0.72 for various regimes

are shown. The value of the local turbulent Prandt]
number on the wall Pr,, is given by

K Aot oo
Pr‘w = - Pr = e Pr = P}“:\fil—~f117 (5.19)
K’J Aqlua\k X

w

i

which for 2, = x and a,,, = 2,/ Pr'?) is simplified to

Pr

(%

Pr, = AT (5.19aj
The coordinates of the extreme value of the local
turbulent Prandt! number may be determined from the
following condition [equations (3.20) and (5.3)]:

d,liy," . d[(f;/\’}/'(llq!//ajj Pr -

AT =0
dy dy

{5.20)

Pr=072

7]

10 4

F1G.19. Relative density of turbulent heat flux q,/q,, = f(Y.2,)
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F1G. 21. Turbulent Prandtl number Pr, = f(Pr), Re = 94 582.

which may, for the region near the wall, be simplified to

e~ Yag - Y2/"q<1 - i) — e Pawg YZ/aq(i — i)
a Uy O

— o~ P¥ag~Y¥agw 11 + e~ Plawg =Ygy
& g

Gma)
x[———]=0, (520a)
Oy qw.

fulfilled identically on the wall (Y = 0). The relation
(5.20a) is based on the simplified eddy viscosity and the
eddy diffusivity of heat limited to two basic branches
(with terms containing Y only). For the sake of the
symmetry of the eddy viscosity and eddy diffusivity,
according to the model, the extreme turbulent Prandtl
number must be even at the center line (Y = 1, R = Q).
The center line value of the turbulent Prandtl number is
determined by

A(c— l/a__e—- l/azw)

PrtO = Aq(e——l/aq_e'llzqw).

{5.21)
Forhigh Reynolds numbers (low «,,, and «,,) and o=
this can be simplified for classical fluids to

Pry = Prii2, (5.21a)

Aswell as theextremes on the wall and at the center line,

10
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generally there are two other extremes of the local
turbulent Prandtl number Pr,in the interval Ye<0,1).

For individual flow regimes over a selected range of
Prandtl number values Pre{0.003, 0.1> covering
practically the total region of liquid metals, the values of
the Nusselt number Nu have been fixed with the aid of
equation (4.5a) and the temperature at the center line
fromequation (4.4). The computed values of the Nusselt
number for the selected values of Pr as a function of the
Reynolds number Re are given in Fig. 23. In Fig. 24
values of Nu are plotted as a function of Peclet numbers
(Pe = Re Pr) and in Fig. 25 values of the temperature
©®, at the center line are plotted as a function of the
Reynolds number Re. The dependences are limited by
the line corresponding to zero contribution by the
turbulent heat transport ¢, =0, ie. the regime
corresponding to a,, = «, = 1/n. The broken limiting
line corresponds to the transition flow regime for
Re 2 7000 for which the coefficients a (< 1/z), &, (<)
and A have been computed from the experimental data
of the friction factor fand the velocities at the center line
U, [16]. The agreement of the computed values of the
Nusselt number Nu with the data found in the literature
for the region of fully developed convection of liquid
metals is apparent.

It seems necessary to point out that the model in
question is valid for fully developed convective heat
transport only, i.e. for high values of Peclet number Pe.
For low values of Pe 2 500, the computed values of
heat transfer are lower and the values of the
temperature @, in the pipe axis are higher than in
reality. This means that the results obtained when the
modelis used for low values of Peare more reliable. This
is due to the fact that for low Pe values 2, < o and
O < &/Pr; as for velocity profiles in the area of
low Reynolds numbers, Re 2 7000, it is necessary to
consider o < 1/n when applying the eddy viscosity
model {16].

6. RECOVERY FACTOR

The determination of heat transfer described in the
preceding section may only be used when the influence
of dissipated energy on the temperature profile need not
be considered and when the dissipated energy is
negligible. When the gases flow at high velocities the
influence of the dissipated energy on heat transfer is
considerable.

Knowledge of the eddy viscosity and eddy diffusivity

09
D oosf
| o7 r
06
05 t_ : —

—_— Y —

F1G. 22. Turbulent Prandtl number Pr, = f(x,), Pr = 0.72.
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F1G. 23. Nusselt number Nu in dependence on Reynolds number Re for liquid metais (Pr = 0.003-0.1).

of heat allows the influence of the dissipated energy on
heat transfer at high velocities to be determined with
the aid of the recovery factor r** and the adiabatic wall
temperature T, .4, and the determination of the
dissipative heat transfer for the removal of dissipated
energy. Although the heat transfer influenced by energy
dissipation must be taken into account in compressible
fluids, itis possible to base further considerations on the
relations derived for incompressible fluids and take the
results for limiting values.

The energy equation of turbulent flow (2.8), after
being multiplied by p, gives the local density of the
dissipated energy in unit time (W m ™~ %). Using the RHS
of equation (2.8) it is possible to write for the local
density of heat sources in the turbulent fluid flow

S ,du
2

. ro,du r
j=p—u"—=—p
- dr r,

(6.1)

To describe the dissipated energy transport across the
flow, equation (4.1) without its RHS may be used. The
zero value of the RHS corresponds to the density of the
wall heat flux relevant to the dissipated energy ; in this
case any medium temperature increase does not occur
along the path, 1e. 0T/0x = 0. The source term 4,

T T
Pr= 0003
0,008
0,04
0,02
0,03
0.04
Q.

however, must be added to the equation. The
differential equation describing the thermal conditions
in the medium on removal of the dissipated energy has
the form

Ld (A+ a7, 0 6.2)
rdr Pepta dr t4=0 6.2
where § is determined from equation (6.1). Using the
equation for the heat flux density at the wall
corresponding to the dissipated energy

{6.3)

T

equation (6.2) may be transformed into the dimension-
less form

1 d fate, dO** L f R2 \
—=-—1—R =_-2Re——— ** (54
RdR[ a dR jl 24 e(v+~£)/v u 6-4)
where
(T — T, )**
O = KT**
e

| . e
10" 10°

— Pg —

F1G. 24. Nusselt number Nu in dependence on Peclet number Pe for liquid metals (Pr = 0.003-0.1).
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and

s 2T

The term R?/[(v+¢)/v], according to the equation
(2.8¢), corresponds to the local total dissipated energy
rate.

After the differential equation (6.4) has been integrated
twice for the boundary conditions R = 0 = d®**/dR
= 0and R = 1 = @** = 0 the following equation for
the temperature profile is obtained :

1s

@** EzRe Nu**

R
1f {R¥/[(v+&)/v]}dR
xj 9 dR. (6.5)

R{(a+¢,)/a]

After inserting equation (6.5) into the normalizing
condition (4.3a), using equation (2.5) for the fluid
velocity, and integrating the expression for the Nusselt
number corresponding to the dissipated energy
removal, the result is

Nu** =

e ]
~Q 1

49 F L B
Pr=0003 1

8 - 0005

/ otooe !

/ ]

Vo b 1
8 Pe~500 Tl

FiG. 25. Relative center line temperature @, for liquid metals.

The temperature gradient at the wall then is

1
R R3 (6.6)
[(f/4)R ]ZJ‘1R<JI{R/[ +&)/ ]}dR) J‘I j\o [(v+e)/v] deR dRr
PRl | R ) (R x  Rla+e)/a]
For the laminar flow where &/v=¢,/a=0 and

d %k N % %
o\ _ N ©.7)
drR /, 2

From equation (6.3) the temperature difference
between the medium and the wall corresponding to the
dissipated energy removal may be determined as

l“2

AT = B 6.8)
e o) '

which may be expressed by means of temperature
increase u2/2c, corresponding to the total annihilation
of kinetic energy of the flow, as well as the auxiliary
complementary factor r}*. Equation (6.8) may be then
adapted into the dimensionless form

- fRePr
»

= (6.32)

For the auxiliary complementary factor r}* the
following expression results from the equations (6.6)
and (6.8)

i)l A [

(v+e)v

(f/4)Re = 4,
% =3Pr.

The chosen approach enables heat transfer at high
flow velocities to be interpreted as the superposition of
convective and dissipative heat transfer. This is made
possible by the fact that the initial differential equations
(4.1a)and (6.4} are linear. Itis then possible to superpose
the temperature profiles (expressed in dimensional
form). Heat flux densities at the wall may be also
superposed if the corresponding direction of heat flow
is respected.

For several flow regimes (defined by the value «,,) of
media with Pr = 0.72 the values of the auxiliary
complementary factor r}* determined from equation
(6.8b) are given in Table 3. In Table 4 the values of the
factor r}* for media with Pr = 0.67, 0.72 and 0.8 for
o, = 0.00001 (Re = 334 588) are given. The values of
Nusselt number Nu** for dissipated energy transfer
determined from equation (6.6), as well as the values of

2OV TE 4R dR. (6.8b)

) L (v + 8)/v

R[(a +¢,)/a]
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Table 3. Recovery factor r** =

0.0001

it SIMONEK

{Re), Pr = 0.72

0.000002

%y, lamin. 0.00001

Re < 2300 94582.349 334588.29 803923.29

rEx 5/3 Pr= 12 0.85546253 0.84291731 0.84261433
Nu** = f Re Pr/ri* 48/5 = 9.6 362.4542 1012.9873 20778885

Nu 48/11 = 4.36 183.1476 507.7732 1043.4736

K** = Nu**/Nu 11/5=22 1.9790 1.9950 19913

rRE = (K — |)rk* 2Pr= 144 0.837497817 0.838702724 (.835283585

convective Nusselt number Nu determined from the
equation(4.5a)and the ratio K** = Nu**/Nu(theratio
of dissipative and convective heat transfer) are also
given in these tables.

Heat transfer at high flow velocities is defined by [ 28]

.
T’

w

RFEF o

T,

w ad

(6.9)

where

2

u
T x5
) 2c,

LR —
q =

Tyaa = L+ATL (6.10}
signifies the adiabatic wall temperature. The recovery
factor r** gives the quotient of the adiabatic wall
temperature increase ATX* due to flow energy
dissipation and of the temperature increase u?/2c,
corresponding to the total annihilation of flow energy
expressed by the bulk velocity u,

ATEF

2/M,
(ui/2c,)

r**

= . (6.10a)
The adiabatic wall temperature T,, 4 or the value of the
recovery factor r** may be determined by the
superposition of the dissipative and convective heat
transfer if the heat flux supplied from outside g, is
considered identical with the heat flux at the wall g%* at
the dissipated energy removal. For this limiting case

ATX* = AT—-AT**, (6.11)
It follows from the equality ¢, = (—)g** that
hAT = h**AT** (6.12)
and therefore it is possible to write
AT N e

For the recovery factor, with regard to the equations
(6.8) and (6.12a), we may write

PR = (K% s,

(6.13)

0.67

Pr

ek 0.79833659
Nu** = f Re Prjre* 995.27999
Nu 494.10933
K** = Nu**/Nu 2.0142910
PRE = (K¥* — )k 0.8097456
pri?

0.81853528

The values of the recovery factor r** determined from
the equation (6.13) are given in Tables 3 and 4. The
resultant values lie in close proximity to the value Pr'/?
which is used in practical computations based on the
experimental data as the value of the recovery factor
r** in the pipe [18, 21]. For laminar flow in the pipe
r¥* = 2Py,

7. CONCLUSION

The modelsin question regard the eddy viscosity and
eddy diffusivity of heat as the probability density
distributions of the solid wall influence into the fluid
flow. The character of the eddy viscosity and the eddy
diffusivity of heat, described by reputable authors, and
their proportionality near the wall to the third or fourth
power of the distance from the wall, suggest that the
eddy viscosity and the eddy diffusivity of heat result
from two similar stochastic processes acting in opposite
directions. The former process occurs mainly in the
turbulent core and is practically identical for all regimes
of fully developed flow. The latter process occurs
mainly in the proximity of the wall and its reach
decreases in flow regimes defined by high Reynolds
numbers.

The model of eddy viscosity accounts for some facts
found experimentally in turbulent flow. In the first
place there is the physical explanation of the position of
the boundary between the turbulent core and the buffer
layer, usually at the point where = = 27--30, by the
position of the inflexion point of the eddy viscosity
curve. The turbulent energy density maximum
production position corresponds to the values of the
boundary between the turbulent core and the viscous
layer given by the Blasius relation. The value y ™ = Sis
usually regarded as the viscous sublayer in which the
contribution of turbulent transport may be neglected.
According to the model there is a ratio g/v = 0.1
corresponding to this boundary. For the ratio e

0.72

0.84291731 0.91266830
1012.98730 1039.52162
507.77320 528.9445

1.99496015 196527541

0.83870272 0.88097627

0.84852814

0.89442719
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= 0.01 there is a corresponding dimensionless distance
from the wall y* = 2.5,

The advantage of these models isin the fact that their
mathematical expression makes use of normalized
functions so that the proportionality coefficients
represent the mean values of the quantities in question.
The coefficients A, or A, represent directly the mean
value of the relative eddy viscosity {g/v), or eddy
diffusivity of heat (g,/a),, and are, moreover, in their
dimensionless expression A =g or A =¢
practically constant over the whole area of the
developed flow.

The connections between the models of eddy
viscosity and eddy diffusivity of heat are expressed by
means of a simple bond between the coefficients which
occur in the analytical expressions describing the
models, namely by the factor Pr* U2 or Pr12 in
classical fluids and by the factor Pr** or Pr™ ! in liquid
metals. These bonds correct the analogy used by some
authors between heat transfer and momentum transfer
which is based on the direct proportionality between
the eddy viscosity and the eddy diffusivity of heat.

The agreement of the basic flow and thermokinetic
characteristics determined according to the models
with the experimental data about these quantities
stated by both reputable authors and the basic
literature on this subject is so obvious that any
comparison seems needless.

The model ofeddy diffusivity of heat may also be used
for the description of mass transfer conditions. All the
relations given above may be used after substituting
Schmidt number Sc for Prandtl number Pr.Ina general
sense though, there are more similarities between mass
transfer and heat transfer at a constant wall
temperature, T, = const. The influence of the wall
temperature distribution, or possibly of the wall heat
flux distribution, on heat transfer plays an important
role especially in fluids with very low Prandtl numbers,
i.e. in liquid metals. '

The dimensionless differential equation of heat
transfer for the case of boundary condition T, = const.
has the form [22]

1 d|ate dO;
RdR[ , R——dR]_—(-D,-UNuT.

From its solution the relation for the temperature

profile follows as
f ©rUR dR

=N “J “Riareya °F

as well as the relation for the Nusselt number [22]
f ©;UR dR

1
2,
R[(a +¢,)/al

Formally identical dependences which differ onlyin the
terms t/t, and g/q, are valid both for heat and

(7.1)

71.2)

Nuy =

(1.3)

"dR dR
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momentum transport. In the case of flow, the decisive
quantity is the shear stress distribution 7/7,,. In the case
of heat transport, heat flux density distribution, g/g,, is
decisive, being dependent on the thermal boundary
conditions. With the boundary condition q,, = const.,
the ratio g/q, depends exclusively on the flow
conditions.

The eddy viscosity model enables the local direct
viscous dissipated energy rate W, to be determined as
well as the turbulent energy production rate W, also
transformed by dissipation into heat. Knowledge of the
local heat sources in the flow, in connection with the
eddy diffusivity of heat model, enables the influence of
medium flow velocity on heat transfer (so called
recovery factor r**) to be determined, as well as the
dissipative heat transfer #**,

Both the eddy viscosity and eddy diffusivity of heat
models may also be applied to other geometrical
configurations of channels and, after some adjustments,
to flow along solid surfaces.
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APPENDIX

DISCUSSION OF EDDY VISCOSITY
AND EDDY DIFFUSIVITY OF HEAT MODELS

Connection of the models with mixing length and with mixing
velocity

Eddy viscosity model. The suggested model of eddy viscosity
is in full agreement with the conception of turbulent
momentum transport produced by Prandtl and perfected by
Karman, which is based on an analogy with the mechanism of
molecular viscosity from the kinetic theory of gas. According
to this theory the molecular kinematic viscosity is
proportional to the product of the mean translational velocity
of molecules ¢ and the mean free path ¢ [32]

Analogically, eddy viscosity may also be expressed as
proportional to the product of the transverse mixing velocity o
([v] = ms™')and the turbulent mixing length I, ([1,] = m), as
in the relation

& = 2vol, {A2)
which may be rewritten into the dimensionless form
e 2or, |
= = Re,l, (A3)

v Voo,

When compared with equation (3.20a) for the eddy viscosity,
the meaning of the terms and coefficients in this expression will
be obvious. The expression in square brackets [equation
(3.20a)] corresponds to the resultant turbulent relative mixing
length L, and the expression 24/x before the brackets to the
dimensionless transverse mixing velocity

24 2or,

SO IY o Re

24 v

{Ad)
The expression in brackets may be expressed according to the
equation (3.20) as the difference between two partial
expressions containing only the terms with the coefficient « or
o, cach of them corresponding to the relative length (the
relative mixing length in particular),
L=Ye V42— Y)e 2N

—(24Y)e (4 Y)e @ (A5

which dominates in the turbulent core and of the relative
length

Ly=Ye 742 —Y)e 271

—(24 Y)e Y4 Y)e BT Ee (Af)
limiting the first length in the region near the wall,
L= L—L,=H{) (A7)

The relative mixing velocity ¥~ = v/u, may be obtained from
the ratio of the dimensionless mixing velocity Re, and
Reynolds number Re corresponding to the bulk velocity

. Re,
Pa—

A8
Re (A8)

The relative transverse mixing velocily ¥ is shown as a
function of a,, in Fig. 26 together with the values of the velocity
¥ determined on the basis of the model with the use of the
coefficients obtained from Nikuradse’s and Rothfus’s data.
The course of the relative turbulent mixing length L, = I,/r,,

v = 0.499¢7. (A1)  along the pipe radius for a = 1/n and for a few values of the

0012 — : -
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F1G. 26. Relative mixing velocity.
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coefficient «,, is shown in Fig. 27. For the sake of comparison ©
the mixing length according to Nikuradse expressed by the = -ﬁ
equation (A9) [15] is also shown, B 5
=
L=0.14—0.08R*>—0.06R*. (A9) = z
The value of the integrals expressing the mean value of the
relative mixing lengths is equal to one half of the coefficient o
values o and a,, oY T
=X
I3 ! a o kolole
L=—=| LdY =1, (A10a) L Fo XX o
L 0 2 - ey %\ g g S o =
l t a E n¥ 5\ S g S g §
b=t [(roar-%0 o sc 528338 2
w 0 2SS SS¥—eddSmoq
a—a, e g
Lts = Ls—st = —2——. (AIOC)
For the coefficients A4, A,, A, there are the following ar T
expressions: '; e<e
2ol To - g b : :
A= . =Re,L,, (Alla) = s m§$§§m§ QR
2 %8 8982882 g
w=—"=Re,L,, (Al1b) e ee-mmeckey
& g 3
o~ (o]
2vl
A =" =RelL, (Allc) «
’ 2z 27 4
If we know the transverse mixing velocities v or ¥~ or Re, 8 . xS s
and the mean mixing lengths [ or L, or L, and L, the time ® d N 9 9y X ';‘
scale of existence of the turbulent elements in the core, as well o =) w2 g XBw w e
as in the flow region near the wall, can be determined :S % nL8es E VAR SR A
2 oERERERERE &
k ° pER=pai-= et he B ~
L= (A12a) g 8 nTMeegey
5 5 %
lws Eo (=) (=)
lys == (A12b) 2
v o0
= ¥
b 2 29 7
iy = Ly lyy =~ (A12¢) = eSS
. 5 T gRXX
In the dimensionless expression by Zhukowsky number Zh = e N wR5EIT -
[20] the time characteristics will have the form & 5 § g 1;:0 E E “ g %
vt, 2L, oo, £ ZHSAR8 8
Zh=_2=R_=_2A_, (Al12d) MmS SS—mM~cSuog
Tw €, w O N=] vy
~ o <
Vtgs 2Ly 00, AR
Zh, =y =T 2 (Al2e) oo
rZ Re, 24
vt 2L oo, {1 1 -
Zh=—2="2=Zh—Zh,=—"|— -] (Al12f =L
' 12 Re, 2 \4, 4 ( ) x2S
0O X x
The mean values of the relative mixing lengths L,, L., L,, and v 0 g No —
the respective values of the Zhukowsky number Zh, Zh,,, Zh, 2 g s E % % - 5 &
are given for several values of the coefficient «,, in Table 5, ~S 2ISIxy 8
together with the values of the respective relative mixing o § SSkaz 2 § - § °
velocity ¥~ or Re,. X X
Equation (3.22a) for the coefficient K in equation (3.21) may b 5 %
be rewritten using the Zhukowsky number ZA corresponding - =
to the turbulent core and Zh,, for the region near the wall into
the form s
N
=~
24, 24 » 1 1 >
K=—'=—<1—°‘—>=—~——. (A13) . T
oo, oL, o Zh, Zh :’é gl
& =
Eddy diffusivity of heat model. The explanation of the N $ ﬁ\l"'n "”i
physical meaning of the coefficients 4,, @, and «,,, occurring in l I ? "u = d
equation (5.3) for eddy diffusivity of heat may be based, < 2o ST
similarly as in the case of eddy viscosity, on an analogy NEFIET ﬁ; 5j
between molecular and turbulent transport. For molecular W Yo & g
thermal diffusivity, from the kinetic gas theory the following 2nJIIINNN E\é \é
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equation is obtained [32]

o/
a= 1259 ——

e (A14)
p e

statingits proportionality,asin the case of molecular viscosity,
to the product of the mean free path / and the mean
translational velocily of molecules &. With the use of the ratio
v/a = Pr and equation (A1) for molecular viscosity we may
write
of
a= 0499 —. (A15)
Pr
Theeddydiffusivity of heat, by analogy with the eddy viscosity,
may be put proportional to the transverse mixing velocity o
and to the difference between the two partial characteristic
lengths L and L. Each of the terms, however, will be corrected
by the complementary function of the Prandtl number Pr or
possibly of the distance from the wall ¥
I3 20;

W "r Pr[Lg(Pr, Y)~ L, g.(Pr, V)],
el ¥

(A16)

From a comparison with equation (5.3) for the relative eddy
diffusivity of heat, the complementary functions f(Pr),
g(Pr.Y), and g,(Pr, Y) may be determined. For «, = a the
complementary function is

g(Pr.Y)=1. (A17)

Forthefunction g,(Pr, Y)ata,, = 2,/(Pr'/?)validfor classical

fluids it 1s possible to write

Ve yzpr112“+(2 Y)C (2= X)2Pr 2z

gulPr.Y) = o

The relative eddy diffusivity of heat is then connected with the
dimensionless mixing velocity Re, or Pe, and the local values
of the characteristic mixing lengths of the turbulent flow L and
L, by

&
4= Re, Pr'?[L—

4]

(e~ yl,r;“)(l’r\’z ]

Pe, E b1 o0
= Lo Lae L a2
rie

For the relative mean eddy diffusivity of heat, the dependence
on the values of the characteristic mixing lengths L and L., is

&g , ) Pe, Lo 1
A=A, =Re[L Pr'?— L, J= ") Ly~ v
<a>\ “ L J priz| ™ pprit |
(A2l
Forliquid metals, for which the coefficients of eddy viscosity
and eddy diffusivity of heat models in the region of developed
convection are connected by the relations 4, = A Pr and
Ogw = %,/ Pr, for a, = o the complementary functions result
in

f(Pr) =1 1A22)
g(Pr,Y) =1, (AT
gw(Pr‘ Y) — (C - },2;1w)(Pr -1y IAZF‘

For the relative eddy diffusivity of heat of liquid metals

:Re':Pr[LiLw(e*Yz,‘aw)(Pr 1|] lAZ4)
with a mean value of
%) — A, = RefL Pr—L.] N
—} =4, =Re r— = — ]
al. g1 el s W € 5 Pr |
(A25)

In view of the equations (Alla) and (Al1b) it is possible to
express the dependence of the coefficients A4, and A4,,, on the
transverse mixing velocity v and the mixing lengths [, and /,,

Ay = — = (A26)
v
For classical fluids
1 2vl, 2ol (Pri) A27)
R 27
T (vay'? y !
and for liquid metals
2ol, 2vl,
g= — = Pr. (A28
a Vv

For the mean eddy diffusivity of heat of classical fluids the

(4 Ye"(A'Yl-’I'r‘ 7 fotw

(24 Y)e BHYRER
e {A18)

Ve P2 Yle 2T (24 y)eT O (4 y)e @ T

As the terms including (2—Y), (2+ Y) and (4 Y) have very
low values, it is possible to simplify this to

Yipr! "‘yﬂ\\
g Pr,Y) = —— = (e~ yzjlw)(f’ﬂ 2o (Al18a)
o T
For the complementary function f(Pr) at 4, = A Pr'/*, valid
for classical fluids,
. i
f(P"):FQ» (A19)

following expression may be derived:

I, [
S 2D|:E;ﬁ ~ by ] {A29)

which for liquid metals has the form

L
bgs = ZD[lsv ;; }

For a given regime of the fully developed flow and heat

(A30)
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transport, the following relation between the coefficients of
eddy viscosity and eddy diffusivity of heat is valid, independent
of Prandtl number,

Awy = Ax = A0 (A31)

With the use of the equation (A4) for the dimensionless mixing
velocity Re, and the relations (A10a) and (A10b) for the mean
values of the relative mixing lengths L and L., equation (A31)
may be rewritten into a physically more illustrative form

(A3la)

w = Aqutg = cONst.

Aax,, = 2Re, L, L, = const.

in which thermophysical quantities do not occur.

Mathematical description of isolated vortex diffusion in
connection with the eddy viscosity and eddy diffusivity of heat
models

For the local vorticity of a diffusing isolated vortex [30, 31]

= r g™, (A32)
4mvty
while the initial circulation I may be expressed by
I' = 2nr¥cp = 2ar cry, (A33)

where ¢ or ¢ is the circulating velocity on the general radius
r* or on the radius r* = r,,. If equation (A32) is transformed
into the dimensionless form

r.r¥ _ 2r.cro r* 1

&= P raddvip/ra?)

(A34)

v v or, dvgfrl

If the axis of the isolated vortex is located on the pipe wall we
may write (r* = y, r*/r, = y/r, = Y)

"o 2ryero 1 ¥ o I¥2@stpiran (A35)
v v dutpfrl
After insertion
2 r
TWere _ Rep = — (A36)
v vy
and
vt
725 = Zh, (A37)
we will get
W R yo-vium, (A38)

v o 4Zhy

The velocity fields of the two superposed diffusing isolated
vortices with the initial circulation I" and T, in the opposite
direction stopped at times ¢r- and t.,, are described by

roy Rep
—(Q-Q,) =
v ( " 4Zh

—-Yy2
Y e~ Yiazhy

Rer,,
4Zh,,

From a comparison of equation (A39) with the basic branch of
the eddy viscosity model [according to equation (3.19)]

E ~ 2_‘4_ Ye~Y2/zz_ & Yc—}’l/mW

v 4 [

Ye~ Y2/4Zhrw_

(A39)

W

it follows for the relative eddy viscosity the proportion

i NL‘VX(Q_QW)
vy

(A39a)

and for the individual coefficients the following expressions

1
x= 4Zhr( = -),
T

(A40a)
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ty = 4Zhy., (A40b)
A= —Rzﬁ - 2—; (A41a)

A= (A41b)

For the relative circulation velocity ¢y or @g.,, it follows

R
or =0 =70 (Ad2a)
U Re
R
fpa = 10w = T8, (A42b)
u, Re

S

The connection between the magnitude of the relative mixing
velocity ¥° = Re,/Re, taken into account in the explanation of
the eddy viscosity mechanism based on the mixing length, and
the value of the relative circulation velocity ¢r or ¢r,, is
expressed by the relations

Qor =49 Zh =29 L, (A42¢)
Qro =4V Zhr, =29 L, (A42d)
For o = 1/n we may write
¥ = mor.
With regard to equation (3.23) we may write
Rer Rer, T v} T, 1y ot
4Zhy  4Zhp,  Amtev? o dmip, v 2t v?
- 62;:: :-“32" (Ad3a)
For o = 1/n we may write
Ree T (A43b)
4Zhy v
For the relative eddy viscosity we may write
e _ Rer [Y(e™Y*42h — ™ V2/o2h,
v  4Zh ’
(2 Y)(e™ B VHAZhy _ o =2 = D¥aZir,)
—(24Y)e YVHAZhy _ o= (2+ Y)2/4Zhrw)
—(4= eI ooy (Ad4)

which corresponds to the course at different times ¢ and ¢, of
the ‘frozen’ local vorticity of the two diffusing co-axial isolated
vortices with their axis on the wall and with a different and
opposite initial vorticity expressed by velocity circulation I’
and I',,, while the ratio of the initial circulations is identical
with the ratio of the times fr and tr.,

F_ & A45
l—‘w B tl"w. ( a)
For a = 1/n we may write for time t; = rZ/(4nv) or
o 1
Zhy = — = — = 0.0795774151. (A45b)
4 4z

_Between the time scales used in considering the eddy
viscosity mechanism on the basis of the mixing length, namely
t,and t,, and the times ¢- and tr., there is the proportionality

A _Re e
= = a)

Consequently, there is also proportionality between the times
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t, and t,, and the initial circulation

rw— = Zs (A46b)
For a2 = 1/n we can write
Re, = 7 Rer, (Ad7a)
7 Rep
1= b (A47b)

The proportionality coefficient K in theequation(3.21) may be
expressed with the aid of Zhukowsky numbers Zhand Zh,,

(o Re (1 1
T 16Zh \Zhy, Zhy

- Rer
" 16Zh  Zhy,,

Zhl"w
Zhy

>. (A48)

For the mean value of the relative eddy viscosity we may

write
e\ Rer— Rer,,
v/, B 2 ’

In the diffusion of the isolated vortex the change of the
momentary circulation velocity ¢, to the stationary initial
velocity ¢ ratio is governed by the expression identical with
Rayleigh distribution

dicp_ /ep) _ 2r*
dr* v

(A49)

7r'2/4vrr.

(A50a)

In the dimensioniess expression the relation (A50a) has the
form of

d(crﬂ/"cr) . 2Y
dY  4Zhe

—y2/47
e Y /4£h[-,

(A50b)

which follows from the derivation of the momentary velocity
course (A51) that is formally identical with equation (3.10) for
the distribution function F(Y) [23, 24}

Cr—

DRI |

Cr

—e T = | —e T YA — F(Y)., (ASD)

For eddy viscosity we can then write

E~£4 d(crﬂ/cr]> AEW’ d(cr - w/Crw (AS2)
v 2my dY /-, 2mv dy —

The connection between the momentary shear stress 7, of
the isolated vortex and the initial stationary shear stress 1 is
expressed directly by the change

ﬂCL“'/’CF) = (T L _r C"Z">, (A53)
dY v p oo P oCr
where
deyp .
Ty = PV d;* : (A54a)
deyp
T = pv o {A54b)

A further expression of the eddy viscosity follows from a
transformation of equation (A50b). If the momentary local
vorticity Qor Q,, is replaced by the angle velocity w or w,, [30]

w= 9 (AS5a)
2
w, = 921 (A55b)

and if the momentary fictitious peripheral velocity of vortices
is introduced

Coy = WY {AS56a)

Iu)v
or

{A56b)

Copw = OWY

we may obtain an expression equivalent to the first term of
equation (3.20a) for the eddy viscosity

e 2rye 2r,c
LTy T

oy o {AST
Vv v vV
If we put
2rwcu)y -
T = Remv (Abga)
v :
or
2rCpw .
———— = Re,, .- (AS8b)
v
we can then write
I3
-~ Re,,—Re,,. {A59)

¥

The fictitious peripheral vortex velocity may also be expressed
as a relative one

Re

C

Por = ;” = «k—‘ef {A60a)
or
Quyw = Corw &?fﬂ“‘ (A60b)
< Re

Relations analogous to equations (A56), {A59) and (A60) may

also be written for other terms of the eddy viscosity expression

containing the coordinates (2— Y) or (2+ Y)and (4~ Y). The

momentary fictitious peripheral velocities are connected with

the components of the relative mixing length by
Por _ Cay L L,

{A60c)

v D r

W

or

Puyw _ Capw - [i{ = L

(A60d)

v v Iy

Wy

The mean value of the relative eddy viscosity may then be
expressed by means of the mean momentary fictitious
peripheral velocity ¢, OT €,

£ 2r ¢ 21 WCorws
(\> = S DM Re,—Regs  (ASI)
v/ v v
where
Ctr)a (Pws IS x
= = {A62a)
b v ry 2
or
Cows _ Paws _ lws oy
Com _ Doows 0 o= (A62b)
v ¥ ro . 2

1t follows from a comparison of equations (A49)and (A61) that

Re;  Rep,, )
Re,. Reg,,
Similarly, we may introduce the fctitious reduced
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peripheral velocity c,o OT 0. related to the radius y = r,,
namely

Cop = Wy, {A63a)
or
Coow = Dyl (A63b)
and then write the proportion
&
=~ 2V You: (A64)
where
yx = Lo (A653)
v
or
x, = Lo, (A65b)
v

The same procedure as in the case of eddy viscosity may be
applied in the mathematical expression of the connection
between the isolated vortex diffusion and the eddy diffusivity
of heat. Analogously, we may write

b M-, (A66)
a a
For liquid metals

tyr = tr Pr, (A67a)
tirw = Iros (A67b)

t
For = Zhr( = _>, (A67c)

4n

Zhp,
Fopy = —22 (A67d)
Pr

where For = atyr/ry, ot For,, = at,r,/ri, are Fourier numbers.
For classical fluids

24 Pr'>  Rep Pr

= . (A68a)
o 4Forg
2A,, Pr'’?  Rer, Pr
- . (A68b)
o, 4F ok
(va)'/? ¢, at,
Forg == — 5= Prl;’{rz, (A69a)
va)l’? ¢ atry
Fopuy = 20 farx _ _Olar (A69b)

2 T pl1i2,2°
Pr vl Pri%2

where Fopg and For,x are modified Fourier numbers.

Summary of the models

Forboth theeddy viscosity model and theeddy diffusivity of
heat model there are three suitable physical interpretations
which do not contradict each other. Also the dimensionless
complex 24/x or 24,/x,, allows different interpretations.

(1) Eddy viscosity may be interpreted as the result of a
mixing process characterized by the constant transverse
mixing velocity and by a certain characteristic length which
may be split into two components. The local magnitude of
both the components is dependent on the distance from the
wall while the course of the mixing length in the core is
practically identical for all regimes of developed flow. Much
closer to reality is the idea of two mixing processes with the
mixing velocities of the same magnitude but of the opposite
direction (v, = —v) and with different local values of the
mixinglengths (I, < I). The complex 24/xor 24/« expresses

the dimensionless mixing velocity in the form identical with
Reynolds number in considering the mixing velocity as
characteristic

24 2or,

a v

= Re,. (A70)

(2) The mathematical description of the model is identical
with the mathematical description of diffusion of two co-axial
isolated vortices of opposite direction with axis on the wall,
‘frozen’ at certain times. The time of stopping the basic vortex
expressed in the dimensionless form Zh; is constant for the
developed flow, while for the other vortex the time of stopping
decreases with increasing Reynolds number. The complex
2A/a may then be expressed by the ratio of the dimensionless
circulation velocity Rer or Rey,, and the dimensionless time
Zhy or Zh,, until the fictitious stopping of the vortex

24 Rep Rer,,

s SR . (A71)
o 4Zh. 4Zhg,

This ratio corresponds to the dimensionless time change of the
circulation velocity. For the dimensionless expression of the
time change of the velocity, namely by the mean value of
retardation cpq/2tr = Crow/2try it is necessary to supply the
factor r3/v?

3 3
24 crotu _Crow’sw

a2 v 2p, v

(AT2)

(3) The statistical conception of the problem, on the basis of
which the eddy viscosity model has been derived, appears to be
the most suitable approximation. Eddy viscosity is viewed as
the result of two stochastic processes, the basic one being
limited by the dimensions of the channel, with its basic
parameters subsequently constant (¢ = 1/z) for all regimes of
developed flow. The other process, which is of a lesser reach (its
effect being dominant in the wall region) depends on the
Reynolds number.

Analogously as in the case of the physical idea of the two
diffusing vortices, the time scales of the stochastic
processes may be obtained by replacing the dispersion
expressed dimensionally, 62 = o3r2, by the product of time ¢,

and kinematic viscosity v,
2
6; =1,V

(AT3)

or by replacing the dimensionless dispersion ¢7 directly by
Zhukowsky number Zh,

2 Vi, 4—m
oy = Zh, = E === o, (A74a)
Vi 4—T
olsz = Zhdw = ; = Oy (A74b)
re 4

There is a proportionality between the time ¢ or tp, in
expressing eddy viscosity by means of two frozen’ vortices and
the time scales ¢, or ¢,,,

4—r

Zhy _ Zhow _ 0.8584073461
Zh.  Zh,, 1 |

y lo

PRl (A75)

For the relative eddy viscosity we may then write, analogically
to equation (A44)

£ i__ [Y(e~ Y*/4/a—mizh
v [4/44—m)]Zh,

+(2— Y)(e =@ I~ mNZh, _ o= (2 =114/ WNZh,y)

o @ VAN = Zhy )

—(2+Y)e~ QHYV4/(4=mNZh, _ o= (2+1)2/[4/(4~ ")]Z".,w)
—(d—=Y)e 4 D44 -mNZh, _ o~ (4= 1)214/(4~ NZhouy],

(A76)

e —

where

Re, = Rep = 2A4.
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To the value o = 1/ there is the corresponding dispersion
oy = Zh, = (4—n)/4n = 0.06830988614 = const. and the
standard deviation ¢, = (¢3)''? = 0.261361004 = const. The
coefficient «,, however, depends to a considerable extent on
Reynoldsnumber Re, or onthe complex ( f/4) Re. The values of
the time scales Zh,,, = o1, are given in Table 6 together with
the mean values of the Rayleigh distribution y,, according 1o
equation (3.11).

The formal agreement between the stochastic model of eddy
viscosity and the velocity field of the ‘frozen’ isolated vortices
allows the complex 24/« to be written as

24 Re, Re,,

— e e T . {A77a)

x [44-m)]Zh, [4/4—m)]Zh,, '
where

Re, = Re; = 24
and
Re,, = Rep, = 24,

or

24 d—mcq 1y 44— ooy 1Y

[P A A -
V2

v? 2

A77b
o 2t { )

T aw

where ¢,o = ¢po and ¢,0. = Crow 18 the fictitious circulation
velocity and the ratios

477; Coo _ 4=T Coow Crow _ Cro

2 01, 2 21y

Low 2y,

are the mean value of retardation.
The equations (A72) and (A77), expressing the complex
2A/a, are formally identical with

Galileo number Ga = g{ry/v?),
Archimedes number Ar = g{Ap/po)(rs/v?) and
Grashof number Gr = g(AT/Ty)(r2/v?)

in which the first term corresponds to the velocity variation in
time, namely the acceleration or reduced acceleration, and the
term r2/v? is identical in all the criteria.

Conclusions analogical to those drawn from the eddy
viscosity evaluation from the point of view of mathematical
statistics, may also be reached in the case of the eddy diffusivity
of heat. To obtain the time scales of the processes in turbuient
heat transport, namely Fourier numbers Fo, and Fo,,, it is
sufficient to replace the value of the coefficient 4 at Fo.or Foy,
in equations (A67c) and (A68a,b) by the value 4/(4 —n). The
equation (A75)may also be applied to heat transport, resulting
in an analogical proportion

Fo, _ Fo,, Fog, _ Foyow

For  Fop, Fogy  Fogpy,
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The eddy viscosity model enables the decisive basic
hydrodynamic characteristics of the developed turbulent fluid
flow to be determined without the knowledge of any further
experimental data.

With the use of the values given in Table 2 an approximate
proportion may be found between the expression (f/2)2 Re.
which represents the Reynolds friction number Re*, and the
complex 2A4/x (i.e. the dimensionless transverse mixing
velocity)

FANE 24
(' Re = Re* =2k -~ {A79a)
2, 3
or, in dimensional form,
e N2
¥ = (W> = 2kv=f = {k*¥ 2. {A79b)
P

The coefficient of proportionality k ranges in the limit of the
values of k = 2.8 for low Reynolds numbers and k = 2.55 for
high Reynolds numbers. The mean value of the coefficient is
k = 2.675. With the use of the preceding proportion the friction
factor may be determined from the values of the coefficients «
and x, or 4 and A, and from the values of the complex

(f/4)Re:
f' 1,2
)

The proportionality between the transverse mixing velocity
v and the fictitious turbulent friction velocity u*
determined from the maximum turbulent shear stress t, .,
instead of the shear stress at the wall 1, displays better
agreement.

_(/4)Re
T k(A

(A80)

T max

u¥ ax = 2k0, {A8la)

/2 102 T\ 12 7 \2 L\l

W max = () = (3-"') ( i) u*(- ‘f) . (ABID)
o, ‘[’ (1 ; f\h 4 omax \tW / max

The proportion in a dimensionless form is then
AN AN 24 8ki¥7
= — Re =2k, — = = -~ (A8lc}
2 Tw/ max X (Tl/’Tw)mux

For the coordinate Y =Y, ,,, obtained from the equation
(3.43), and using equation (3.42), we may determine (7,/7,,)pmax-

If we use the values from Table 2 the proportionality
coefficient k, in the observed region of parameters will range
from k, = 2.67 for low Reynolds numbers to k, = 2.63 for high
Reynolds numbers Re. If the deviation of 0.7 is taken into
account the value of the proportionality coefficient k, = 2.65
can be taken as constant. An expression for the friction factor,
f.[equation (A82a) which is analogous to equation (A80)] may
be found

47 (.z;)“l it mal) 4)Re A%
== 0.858407346. (A78) 5 k(2A/2) (AR2a)
Table 6. Time scales and mean values of the stochastic reach of the wall into the fluid flow
Ao
10°° 1077 1074 1073 10°*
N 0.0008862269255  0.002802495609 0.008862269255 0.02802495609 0.08862269255
62, = Zh,, 2.146018365 2.146018365 2.146018365 2.146018365 2.146018365
x 1077 x 107° x 103 x 1074 x 1073
Oyw 4632513750 1.464929474 4.632513750 1.464929474 4632513750
x 107% x 1073 x 1073 x 1072 x 10772
% 1/n = 0.3183098861
0.5
6= 2Zh, 0.06830988614
0.261361004
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F1G. 28. Fanning friction factor f = f(Re).
or and very high values of Reynolds number. Both the depen-
2 dences are practically identical at Re ~ 10°. A comparison
f= 2(t/tmax[(f/4)Re] (A82b) with /= f(Re), according to various authors, confirms the
k2(2A/a)? accuracy of the friction factor values in the range of Reynolds
. . . number Ree (7 x 103, 1.3 x 10°), as given above.
with the corresponding value of the Reynolds number given by The model of eddy viscosity is in accordance with Prandtl’s
2U(2A/0)? conception as well as the mathematical expression of Reynolds
(A82c)  shear stress

= Wt [/ORE

The values of the friction factor f, determined using the three
coefficients A, a, a,, from equation (A82b), as a function of the
respective Reynolds numbers Re are given in Fig. 28 together
with the values by Nikuradse according to equation (3.27). The
pairs of values of the friction factor fand Reynolds number Re
aregivenin Table 5. The largest deviations from the Nikuradse
relation, which do not exceed 1%, are found in the values of the
friction factor f determined from equation (A82b) at very low

2

— pF(d—“) ) (A83)
dy

It differs only in that in Prandtl’s conception the transverse
mixing velocity o is regarded as the product of the mixing
length ! and the velocity gradient du/dy [v = [(du/dy)]. In the
model in question the velocity v is considered constant for the
given flow regime.

MODELE DE LA VISCOSITE TURBULENTE
ET DU COEFFICIENT D’ECHANGE THERMIQUE TURBULENT

Résumé— La connexion entre la viscosité turbulente et la distribution des fréquences dela portée de I'influence
d’une paroi matérielle dans le courant d’un fluide est dérivée. L’expression de I'influence de la paroi est
généralisée, valide aussi bien pour I'écoulement et la transmission de la chaleur dans des canaux lisses et
rugueux, comme pour I'écoulement autour d’une surface. Le projet d'un modéle de la viscosité turbulente
d’une circulation établie d’un fluide aux propriétés constantes dans un tube lisse est élaboré. Les coefficients

apparaissant dans le modéle sont déterminées

et a partir de ces coefficients les caractéristiques

hydrodynamiques du courant sont déterminées. Le projet d'un modéle analogue de I’échange thermique
turbulent est €laboré, la connexion entre les coefficients des deux modéles est déterminée et les caractéristiques
thermocinétiques des fluides avec Pr = 0.72-10 avec g,, = const. sont calculées. Le modéle du coefficient
d’échange thermique turbulent est modifié pour les métaux liquides. L’amalgame des deux modéles permet de
déterminer l'influence de I'énergie dissipée sur les proprietés thermocinétiques y compris le coefficient de la
transmission de 1’energie dissipée. Le sens physique des coefficients des modéles et leur connexion avec le
parcours de mélange et les quantités qui caractérisent la diffusion du filet-tourbillon est discuté.

MODELL DER TURBULENTEN ZAHIGKEIT UND TURBULENTEN
TEMPERATURFAHIGKEIT

Zusammenfasung— Abgeleitet ist der Zuzammenhang zwischen der turbulenten Zihigkeit und der Verteilung
der Wahrscheinlichkeitdichte des Einflusses der Wand auf das stromende Medium. Der Ausdriick des
Einflusses der Wand ist allgemein giiltig fiir die Stromung und den Wirmelibergang in glatten und rauhen
Kanilen und fiir die dussere Stromung der Oberflichen. Entworfen ist ein Modell der turbulenten Zihigkeit
fiir entwickelte Strémung eines Mediums mit konstanten Eigenschaften in glatten Rohre. Die Koeffizienten
des Modells sind festgestellt und bei ihren Anwendung hydrodynamische Charakteristiken der Strémung
bestimmt. Ein analogisches Modell fiir die turbulente Temperaturleitfihigkeit ist entworfen, der
Zusammenhang zwischen den Koeffizienten beider Modelle abgeleitet und fiir ¢,, = konst. thermokinetische
Charakteristiken fiir Fliissigkeiten mit Pr = 0.72-10 bestimmt. Das Modell ist gleichfalls fiir fliissige Metalle
zubereitet. Die Verbindung beider Modelle erlaubt den Einfluss der Dissipationsenergie auf die
thermokinetischen Charakteristiken und des Warmeiibergangkoeffizienten fiir die Dissipationsenergie zu
bestimmen. Besprochen ist der physikalische Sinn der K oeffizienten des Modells sowie die Zusammenhiinge
mit der Mischungslinge und mit den Grdssen, die die Wirbeldiffusion charakterisieren.
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Jiti SIMONEK

MOJEJb BUXPEBOUW BS3KOCTU U BUXPEBOW TEMHNEPATYPOINPOBOAHOCTH

AnnoTtamus -— [IpeniokeHa CTAaTUCTHYMECKAS MOJEIb BUXPEBOH BH3KOCTH, PaccMaTpuBacMas Kak
pacrnpesie/icHHe TUIOTHOCTH BEPOATHOCTH BIIMSHHMY TBEPAOH CTEHKH Ha oO0TekaromHil ee noTok
KHUAKOCTH. [1pe1oXeHHble COOTHOIICHHS, YYUTHIBAIOLIME BIMSHHE CTCHKH, MO MNPEANOIOKEHHIO
CTpaBe;UTHBBL /1A NEPEHOCA WMNYNIbCAa M Tenid B raJKMX M IUEPOXOBATBIX KAHAIAX ¥ MPHUCTCHHBIX
TEMEHHH THma norpaHudHoro cihos. Ha ocHoBe ITHX COOTHOLIGHMH mnoOJyd4eHa Mofelib BMXPEBOH
BA3KOCTH I8 DPa3BUTOr0 TEYEHHS XUIAKOCTH ¢ TOCTOSHHBIMH CBOMCTBAMH B [yagkux Tpybax.
Hafinens xo3bdUUMEHTBl MOJEIM M MPEACTABIEHbLI YHCIEHHDBIE DPE3yJbTaTbl PAcYeTa OCHOBHBIX
IMAPOJANHAMHYECKMX XapakTepucTuk. IlpeictaBiiena aHajOrM4Has MOZelb BHXPEBOH TeMiepaTypo-
MPOBOJHOCTH M MOKAa3aHA ce CBA3b C MOAECNLIO BHXPeBOH BA3KocTH. PaccumraHbl TernsioBble xapak-
TEPUCTUKU TypOyIeHTHOro TeueHus (Pr = 0,72- 10) xuakocty B Tpybe Mpu ONHOPOIHOM TEILIOBOM
[IOTOKE Ha CTeHke. Mofeb BUXPeBOH TeMnepaTypornpoBOAHOCTH PacmpOCTpaHeHa Ha ciydaid KHAKMX
Metanos. [Ipunoxenne obeux Mozeneil NO3BOJAET ONpEACIMTh BIMSHHME JUCCHUIIALMH HHEPIHM HA
HAPOIMHAMUYECKHE W TEIUIOBbE XaPAKTEPUCTHKM TEYEHHS, a TaKke KodbduUHEeHT Ttennonepexoca.
Obcyxmaercs uzvuyeckuit cMbICT KOIQOULMEHTOB MOJeNeH W NoKalzaHa UX CBA3b ¢ JUTMHOW TVTH
CMEUIMBAHNS.



